Question		Scheme	Marks	AOs
2(a)		Equate sum of i -components to 0: $-1+3+c=0$	M1	3.1a
		c = -2	A1	1.1b
			(2)	
2(b)		$(-\mathbf{i}+2\mathbf{j})+(3\mathbf{i}-4\mathbf{j})=0.5\mathbf{a}$	M1	3.1a
		$\mathbf{a} = (4\mathbf{i} - 4\mathbf{j}) \text{ (m s}^{-2})$	A1	1.1b
			(2)	
(4 mark				narks)
Notes: Allow use of column vectors in working				
2(a)	M1	Equation in c only		
	A1	cao		
2(b)	M1	Use of $\mathbf{F} = m\mathbf{a}$, with all terms		
	A1	Cao. Must be in terms of i and j and not a column vector.		