| 1. | A train is moving along a straight horizontal track between two points A and B. | | |----|--|-----| | | In a model of the motion of the train | | | | at time t = 0 the train is moving with speed 20 m s⁻¹ as it passes A the train then moves with constant speed 20 m s⁻¹ for 12 s the train then decelerates at a constant rate a m s⁻² for 8 s, reaching a speed of 16 m s⁻¹ the train then accelerates at 0.4 m s⁻² until it reaches B | | | | Using the model, | | | | (a) sketch a speed-time graph for the motion of the train between A and B , | (2) | | | (b) find the value of a. | (1) | | | The train travels $285 \mathrm{m}$ while it is accelerating at $0.4 \mathrm{ms^{-2}}$ | | | | Using the model, | | | | (c) find the distance AB , | (3) | | | (d) find the total time taken for the train to move from A to B . | (3) | | | (e) State one limitation of the model of the motion of the train at time $t = 12 \mathrm{s}$. | (1) |