| Question | Scheme | Marks | AOs | | |--|---|-------|--------|--| | 5(a) | Pond contains $1000 + 5t$ litres after t days | M1 | 3.3 | | | | If x is the amount of pollutant in the pond after t days | | | | | | Rate of pollutant out = $20 \times \frac{x}{1000 + 5t}$ g per day | M1 | 3.3 | | | | Rate of pollutant in = 25×2 g = 50 g per day | B1 | 2.2a | | | | $\frac{\mathrm{d}x}{\mathrm{d}t} = 50 - \frac{4x}{200 + t}$ | A1* | 1.1b | | | | | (4) | | | | (b) | $I = e^{\int \frac{4}{200+t} dt} = (200+t)^4 \Rightarrow x(200+t)^4 = \int 50(200+t)^4 dt$ | M1 | 3.1b | | | | $x(200+t)^4 = 10(200+t)^5 + c$ | A1 | 1.1b | | | | $x = 0, \ t = 0 \implies c = -3.2 \times 10^{12}$ | M1 | 3.4 | | | | $t = 8 \Rightarrow x = 10(200 + 8) - \frac{3.2 \times 10^{12}}{(200 + 8)^4}$ | M1 | 1.1b | | | | = 370g | A1 | 2.2b | | | | | (5) | | | | (c) | e.g. The model should take into account the fact that the pollutant does not dissolve throughout the pond upon entry The rate of leaking could be made to vary with the volume of water in the pond | B1 | 3.5c | | | | | (1) | | | | (10 marks) | | | narks) | | | Notes: | | | | | | (a) M1: Forms an expression of the form 1000 + kt for the volume of water in the pond at time t M1: Expresses the amount of pollutant out in terms of x and t B1: Correct interpretation for pollutant entering the pond A1*: Puts all the components together to form the correct differential equation | | | | | | (b) M1: Uses the model to find the integrating factor and attempts solution of their differential | | | | | | equa | equation | | | | | | Correct solution Interprets the initial conditions to find the constant of integration | | | | | M1: Uses | Uses their solution to the problem to find the amount of pollutant after 8 days Correct number of grams | | | | | (c) | | | | | | | Suggests a suitable refinement to the model | | | |