9(a)(i) W eight $=$ mass $\times \mathrm{g} \Rightarrow \mathrm{m}=\frac{30000}{\mathrm{~g}}=3000$
But mass is in thousands of kg , so $\mathrm{m}=3$
(ii)

| $\frac{d x}{d t}=40 \cos t+20 \sin t, \frac{d^{2} x}{d t^{2}}=-40 \sin t+20 \cos t$ | M 1 | 1.1b |
| :---: | :---: | :---: |
| $\begin{aligned} 3(-40 \sin t & +20 \cos t)+4(40 \cos t+20 \sin t) \\ & +40 \sin t-20 \cos t=\ldots \end{aligned}$ | M 1 | 1.1b |
| $=200$ cost so PI is $x=40 \sin t-20 \cos$ | A 1* | 2.1 |
| or |  |  |
| Let $x=a \cos t+b \sin t$ $\frac{d x}{d t}=-a \sin t+b \cos t, \frac{d^{2} x}{d t^{2}}=-a \cos t-b \sin t$ | M 1 | 1.1b |
| $4 b-2 a=200,-2 b-4 a=0 \Rightarrow a=\ldots, b=\ldots$ | M 1 | 2.1 |
| $x=40 \sin t-20 \cos t$ | A 1* | 1.1b |
| $3 \lambda^{2}+4 \lambda+1=0 \Rightarrow \lambda=-1,-\frac{1}{3}$ | M 1 | 1.1b |
| $x=A e^{-t}+B e^{-\frac{1}{3} t}$ | A 1 | 1.1b |
| $x=P I+C F$ | M 1 | 1.1b |
| $x=A e^{-t}+B e^{-\frac{1}{3} t}+40 \sin t-20 \cos t$ | A 1 | 1.1b |
|  | (8) |  |
| $t=0, x=0 \Rightarrow A+B=20$ | M 1 | 3.4 |
| $\begin{aligned} & x=0, \frac{d x}{d t}=-A e^{-t}-\frac{1}{3} B e^{-\frac{t}{3}}+40 \cos t+20 \sin t=0 \\ & \Rightarrow A+\frac{1}{3} B=40 \end{aligned}$ | M 1 | 3.4 |
| $x=50 e^{-t}-30 e^{-\frac{1}{3} t}+40 \sin t-20 \cos t$ | A 1 | 1.1b |
| $\mathrm{t}=9 \Rightarrow \mathrm{x}=33 \mathrm{~m}$ | A 1 | 3.4 |
|  | (4) |  |

## Question 9 notes:

(a)(i)

M1: Correct explanation that in the model, $m=3$
(ii)

M1: Differentiates the given PI twice
M1: Substitutes into the given differential equation
A1*: R eaches 200cost and makes a conclusion
or
M1: U ses the correct form for the PI and differentiates twice
M1: Substitutes into the given differential equation and attempts to solve
A1*: Correct PI
(iii)

M1: U ses the model to form and solve the auxiliary equation
A1: C orrect complementary function
M1: U ses the correct notation for the general solution by combining PI and CF
A1: Correct General Solution for the model
(b)

M1: U ses the initial conditions of the model, $t=0$ at $x=0$, to form an equation in $A$ and $B$
M1: $U$ ses $\frac{d x}{d t}=0$ at $x=0$ in the model to form an equation in $A$ and $B$
A1: Correct PS
A1: Obtains 33 m using the assumptions made in the model

