Question	Scheme	Marks	AOs
9(a)(i)	Weight = mass × g \Rightarrow $m = \frac{30000}{g} = 3000$	M1	3.3
	But mass is in thousands of kg, so $m = 3$		
(ii)	$\frac{dx}{dt} = 40\cos t + 20\sin t, \ \frac{d^2x}{dt^2} = -40\sin t + 20\cos t$	M1	1.1b
	$3(-40\sin t + 20\cos t) + 4(40\cos t + 20\sin t)$	M1	1.1b
	$+40\sin t - 20\cos t =$		
	$= 200 \cos t \text{so PI is} x = 40 \sin t - 20 \cos t$	A1*	2.1
	or		
	Let $x = a\cos t + b\sin t$		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -a\sin t + b\cos t, \ \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -a\cos t - b\sin t$	M1	1.1b
	$4b - 2a = 200, -2b - 4a = 0 \Longrightarrow a =, b =$	M1	2.1
	$x = 40\sin t - 20\cos t$	A1*	1.1b
(iii)	$3\lambda^2 + 4\lambda + 1 = 0 \Longrightarrow \lambda = -1, -\frac{1}{3}$	M1	1.1b
	$x = A\mathrm{e}^{-t} + B\mathrm{e}^{-\frac{1}{3}t}$	A1	1.1b
	x = PI + CF	M1	1.1b
	$x = Ae^{-t} + Be^{-\frac{1}{3}t} + 40\sin t - 20\cos t$	A1	1.1b
		(8)	
(b)	$t = 0, x = 0 \Longrightarrow A + B = 20$	M1	3.4
	$x = 0, \frac{\mathrm{d}x}{\mathrm{d}t} = -Ae^{-t} - \frac{1}{3}Be^{-\frac{1}{3}t} + 40\cos t + 20\sin t = 0$	M1	3.4
	$\Rightarrow A + \frac{1}{3}B = 40$		
	$x = 50e^{-t} - 30e^{-\frac{1}{3}t} + 40\sin t - 20\cos t$	A1	1.1b
	$t = 9 \Rightarrow x = 33 \mathrm{m}$	A1	3.4
		(4)	
		(12 n	narks)

Question 9 notes:

(ล)	(i)	
(a	,	(I		

M1:	Correct explanation that in the model, $m = 3$
-----	--

(**ii**)

- M1: Differentiates the given PI twice
- M1: Substitutes into the given differential equation
- A1*: Reaches 200cost and makes a conclusion

or

- M1: Uses the correct form for the PI and differentiates twice
- M1: Substitutes into the given differential equation and attempts to solve
- A1*: Correct PI

(iii)

- M1: Uses the model to form and solve the auxiliary equation
- A1: Correct complementary function
- M1: Uses the correct notation for the general solution by combining PI and CF
- A1: Correct General Solution for the model

(b)

- M1: Uses the initial conditions of the model, t = 0 at x = 0, to form an equation in A and B
- M1: Uses $\frac{dx}{dt} = 0$ at x = 0 in the model to form an equation in A and B
- A1: Correct PS
- A1: Obtains 33m using the assumptions made in the model