Question	Scheme	Marks	AOs
6 (a)	Attempts sum of roots of $f (= -3/k)$ and product of roots of $g (= 9/m)$ and uses them to form a relationship between <i>k</i> and <i>m</i> .	M1	3.1a
	So $-3/k = 9/m$	A1	1.1b
	Sum of roots of g is $2/m \Rightarrow 2/m$ is a root of g as the other roots have no real part. OR root on imaginary axis has form α i, and substituting in g and equating real and imaginary terms gives $2\alpha^2 - 9 = 0 \& 3\alpha - m\alpha^3 = 0$	B1	3.1a
	$g(2/m) = 0 \Rightarrow m(2/m)^3 - 2(2/m)^2 + 3(2/m) - 9 = 0 \Rightarrow m = \dots (m = 2/3)$ OR $\alpha^2 = \frac{9}{2} \neq 0 \Rightarrow m = \frac{3}{\alpha^2} = \dots \left(=\frac{2}{3}\right)$	M1	1.1a
	So $g(x) = 0 \Rightarrow \left(\frac{2}{3}(x-3)\left(x^2+\frac{9}{2}\right)=0 \Rightarrow\right) x = 3, \pm \frac{3\sqrt{2}}{2}i$	M1	1.1b
	$k = -2/9$, $f(x) = 0 \Rightarrow x = \frac{-3 \pm \sqrt{3^2 - 4(-2/9)(-11)}}{2(-2/9)} =$	M1	2.2a
	$x = 3, \pm \frac{3\sqrt{2}}{2}i, \frac{27}{4} \pm \frac{3\sqrt{7}}{4}i$		1.1b
		(7)	
(b)	Correct roots for f plotted (shown green). Correct roots for g plotted (shown blue).	B1ft B1ft	1.1b 1.1b
		(2)	
(9 marks)			

Notes:

(a)

M1: Identifies sum of roots of f or product of roots of g correctly

A1: Correct equation between *k* and *m*

B1: Realises that g having roots on the imaginary axis means the sum of roots is equal to the only real root of the equation or forms correct simultaneous equations after substituting α i into g

M1: Uses factor theorem with their real root to find m or solves their equations to find m

M1: Uses their *m* to solve g(x). May just see answers from calculator, or can factorise or complete the square.

M1: Deduces the correct value for k and solves f(x) using it. May just see answers from calculator, or can factorise or complete the square.

A1: All five roots correct – may not all be listed in one line, as long as the roots of g and f are clear. Accept exact equivalents. **(b) B1ft:** Correct roots for f plotted, follow through as long as they are complex. If answers to (b) are correct these should be further from the imaginary axis than the real root of g. **B1ft:** Correct roots for g plotted, follow through their roots as long as two are on the imaginary axis.