When $n=1$, LHS $=\left(\begin{array}{cc}4 & -1 \\ 9 & -2\end{array}\right)$, RHS $=\left(\begin{array}{cc}3 \times 1+1 & -1 \\ 9 \times 1 & 1-3 \times 1\end{array}\right)=\left(\begin{array}{ll}4 & -1 \\ 9 & -2\end{array}\right)$. So the statement is true for $n=1$	B1	2.2a
Assume true for $n=k$, so $\left(\begin{array}{cc}4 & -1 \\ 9 & -2\end{array}\right)^{k}=\left(\begin{array}{cc}3 k+1 & -k \\ 9 k & 1-3 k\end{array}\right)$	M1	2.4
Then $\left(\begin{array}{cc}4 & -1 \\ 9 & -2\end{array}\right)^{k+1}=\left(\begin{array}{cc}4 & -1 \\ 9 & -2\end{array}\right)\left(\begin{array}{cc}3 k+1 & -k \\ 9 k & 1-3 k\end{array}\right)$ or $\left(\begin{array}{cc}3 k+1 & -k \\ 9 k & 1-3 k\end{array}\right)\left(\begin{array}{cc}4 & -1 \\ 9 & -2\end{array}\right)$	M1	2.1
$=\left(\begin{array}{cc}4(3 k+1)-9 k & -4 k-(1-3 k) \\ 9(3 k+1)-18 k & -9 k-2(1-3 k)\end{array}\right)$ or $\left(\begin{array}{cc}4(3 k+1)-9 k & -(3 k+1)+2 k \\ 36 k+9(1-3 k) & -9 k-2(1-3 k)\end{array}\right)$	A1	1.1b
$=\left(\begin{array}{cc}3(k+1)+1 & -(k+1) \\ 9(k+1) & 1-3(k+1)\end{array}\right)$	A1	1.1b
Hence the result is true for $n=k+1$. Since it is true for $n=1$, and if true for $k=n$ then true for $n=k+1$, thus by mathematical induction the result holds for all $n \in \square$	A1 cso	2.4
	(6)	
(a) $2^{2}=4 \nless 4=2^{2}$ OR $3^{2}=9 \nless 8=2^{3}$ OR $4^{2}=16<16=2^{4}$	B1	1.1b
(b) The statement $2 k+1<k^{2}$ is not true for all positive integers.	B1	1.1b
(c) The statement in line 4 is true for positive integers $k>2$ so the induction hypothesis is true for $n>2$. So the induction holds from any base case greater than 2.	M1	2.3
Since the result is true for $n=5$ as $5^{2}=25<32=2^{5}$ and $2 k+1<k^{2}$ also true for $k>5$ so the induction holds with base case $n=5$.	A1	2.4
But not true for $n=2,3$ or 4 as $2^{2}=4 \nless 4=2^{2}$ and $3^{2}=9 \nless 8=2^{3}$ and $4^{2}=16 \nless 16=2^{4}$. Hence true for $n=1$ and for $n \ldots 5$	A1	2.1
	(5)	

(11 marks)

Notes:

(a)

B1: Shows the general form holds for $n=1$.
M1: Makes the inductive assumption, assume true for $n=k$.
M1: Attempts the multiplication either way.
A1: Correct matrix in terms of k.
A1: Rearranged into correct form to show true for $k+1$.
A1: Completes the inductive argument conveying all three underlined points or equivalent at some point in their argument.

(b)(i)

B1: Provides a suitable counter example using $n=2,3$ or 4 . Accept $=$ in place of \varangle as long as there is a suitable conclusion with it.
(b)(ii)

B1: Identifies the error as in the scheme or equivalent (e.g. $k^{2}+2 k+1<2 k^{2}$ is not always true).

(b)(iii)

M1: Identifies that the induction is valid as long as $2 k+1<k^{2}$ is true which happens for $k . .3$ (accept any value greater than 3 for this mark).
A1: Correct base case of 5 and explains the proof given holds for integers greater than or equal to 5 .
A1: Complete argument correct. All positive integers satisfying the inequality identified, with demonstration that 2,3 and 4 do not.

