Question	Scheme	Marks	AOs
8(a)(i) (ii)	Container contains $3+0.25 t-0.125 t=3+0.125 t$ litres after t minutes	B1	3.3
	Rate of contaminant out $=0.125 \times \frac{m}{3+0.125 t} \mathrm{mg}$ per minute	M1	3.3
	Rate of contaminant in $=0.25 \times\left(5-\mathrm{e}^{-01 t}\right) \mathrm{mg}$ per minute	B1	2.2a
	$\frac{\mathrm{d} m}{\mathrm{~d} t}=\frac{5-\mathrm{e}^{-01 t}}{4}-\frac{m}{24+t} *$	A1*	1.1b
		(4)	
(b)	Rearranges to form $\frac{\mathrm{d} m}{\mathrm{~d} t}+\frac{m}{24+t}=\frac{5-\mathrm{e}^{-01 t}}{4}$ and attempts integrating factor (may be by recognition).	M1	3.1a
	I.F. $=\left(\mathrm{e}^{\int \frac{1}{24+t} \mathrm{dt}}=\mathrm{e}^{\ln (24+t)}\right)=24+t$	A1	1.1b
	$(24+t) m=\frac{1}{4} \int(24+t)\left(5-\mathrm{e}^{-01 t}\right) \mathrm{d} t=\frac{1}{4} \int 120+5 t-24 \mathrm{e}^{-01 t}-t \mathrm{e}^{-01 t} \mathrm{~d} t=.$.	M1	3.1a
	$=\frac{1}{4}\left(120 t+\frac{5 t^{2}}{2}-\frac{24 \mathrm{e}^{-01 t}}{-0.1}+\ldots\right)$	A1	1.1b
	$\int t \mathrm{e}^{-01 t} \mathrm{~d} t=t \frac{\mathrm{e}^{-01 t}}{-0.1}-\int 1 \times \frac{\mathrm{e}^{-01 t}}{-0.1} \mathrm{~d} t=t \frac{\mathrm{e}^{-01 t}}{-0.1}-\frac{\mathrm{e}^{-01 t}}{(-0.1)^{2}}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	So $(24+t) m=\frac{5}{8} t^{2}+30 t+85 \mathrm{e}^{-01 t}+\frac{5}{2} t \mathrm{e}^{-01 t}+c$		
	When $t=0, m=0$ as initially no contaminant in the container, so $0=0+0+85+0+c \Rightarrow c=-85$	M1	3.4
	$m=\frac{1}{24+t}\left(\frac{5}{8} t^{2}+30 t+85 \mathrm{e}^{-01 t}+\frac{5}{2} t \mathrm{e}^{-01 t}-85\right)$	A1	2.2b
		(8)	
(c)	When $t=30 \mathrm{~m}=25.65677 \ldots$ and $V=6.75$, hence the concentration is 3.80 mg per litre.	M1	3.4
	This resembles the measured value very closely and could easily be explained by minor inaccuracies in measurements, so the model seems to be suitable over this timeframe.	A1	3.5a
		(2)	
(14 marks)			
Notes:			
(a)(i) B1: A correct expression for the volume, may be unsimplified. (ii) M1: Expresses the amount of contaminant out in terms of m and t. B1: Correct interpretation for amount of contaminant entering the container. A1*: Puts all the components together to form the correct differential equation.			

(b)

M1: Identifies the problem as a first order linear problem requiring integrating factor (by finding it or by recognition.
A1: Correct integrating factor
M1: Multiplies through by the IF, expands brackets on RHS and attempts the integration.
A1: Correct integration for first three terms.
M1: Integration by parts used on the $t e^{-01 t}$ term.
A1: Correct integration by parts.
M1: Uses the initial conditions to find the constant of integration - must have a constant of integration for this mark to be awarded.
A1: Correct expression for m, need not be simplified.
(c)

M1: Calculates the concentration from the model at $t=30$
A1: Correct concentration found and uses it to make a comment on the validity of the model.

