$$
f(x)= \begin{cases}\frac{k x}{x^{2}+6} & \text { for } 0 \leqslant x<3 \\ \frac{k}{x^{2}-4} & \text { for } 3 \leqslant x\end{cases}
$$

where k is a positive constant.
The area between the curve $y=\mathrm{f}(x)$ and the positive x-axis is $\frac{1}{4}$
Show that

$$
k=\frac{1}{\ln a}
$$

where a is a constant to be determined.

