

Figure 2
Figure 2 shows a sketch of a shelter against a wall. The shelter consists of two rectangular wooden boards, $O A B C$ and $B C D G$, which can be modelled as parts of planes. Board $O A B C$ is vertical and parallel to the wall and the ground may be assumed to be horizontal.
The points E and F are at the foot of the wall directly below D and G respectively.
The length $O C$ is 0.8 m , the length $O A$ is 3 m and the board $O A B C$ is 1.2 m away from the wall. The points D and G are 1.5 m above the ground.
To model the shelter, take O as the origin, the vector \mathbf{i} to be 1 m in the direction of $\overrightarrow{O A}$, the vector \mathbf{j} to be 1 m in the direction of $\overrightarrow{O E}$ and the vector \mathbf{k} to be 1 m in the direction of $\overrightarrow{O C}$.
(a) Find an equation of the plane $B C D G$, giving your answer in the form $\mathbf{r} \bullet \mathbf{n}=d$

In order to support the roof of the shelter, one end of a pole is attached to the ground at the centre of the rectangle OAFE and the other end to a point on the roof. Modelling the pole as a rod,
(b) find, to the nearest mm, the shortest possible length for the pole.
(c) State a limitation of the assumption that the boards can be modelled as planes.

