Question	Scheme	Marks	AOs
3(a)(i)	$2(0.4+a)=1.2$ or $0.4+a=0.6$ or $0.4+a\cos 0=0.6$ $\Rightarrow a=$	M1	3.4
	a = 0.2 * cso	A1*	1.1b
		(2)	
(b)	Area of rectangle is $1.2 \times 0.6 (= 0.72)$	B1	1.1b
	Area enclosed by curve = $\frac{1}{2}\int (0.4+0.2\cos 2\theta)^2 (d\theta)$	M1	3.1a
	$(0.4+0.2\cos 2\theta)^2 = 0.16+0.16\cos 2\theta+0.04\cos^2 2\theta$ $= 0.16+0.16\cos 2\theta+0.04\left(\frac{\cos 4\theta+1}{2}\right)$	M1	2.1
	$\frac{1}{2} \int (0.4 + 0.2\cos 2\theta)^2 d\theta = \frac{1}{2} \Big[0.18\theta + 0.08\sin 2\theta + 0.005\sin 4\theta (+c) \Big]$ $= 0.09\theta + 0.04\sin 2\theta + 0.0025\sin 4\theta (+c) \text{ o.e.}$	Alft	1.1b
	Area enclosed by curve = $\begin{bmatrix} 0.09\theta + 0.04\sin 2\theta + 0.0025\sin 4\theta \end{bmatrix}_0^{2\pi}$ or $Area enclosed by curve = 2\begin{bmatrix} 0.09\theta + 0.04\sin 2\theta + 0.0025\sin 4\theta \end{bmatrix}_0^{\pi}$ or $Area enclosed by curve = 4\begin{bmatrix} 0.09\theta + 0.04\sin 2\theta + 0.0025\sin 4\theta \end{bmatrix}_0^{\pi/2}$	dM1	3.1a
	$=\frac{9}{50}\pi \text{ or } 0.18\pi (=0.5654)$	Al	1.1b

	= awrt 0.155 (m ²)	A1	1.1b		
		(8)			
		(10	marks)		
Notes					
(a) M1: Interprets the information from the model and realises that the maximum value of r gives half the length of the table top (or equivalent) and solves to find a value for a . Use $\theta=0$ and $r=0.6$ or $\theta=\pi$ and $r=-0.6$ to find a value for a . Using $\theta=2\pi$ is M0 A1*: Correct value for a . Alternative M1: Uses $a=0.2$ and $\theta=0$ to find a value for r A1: Finds $r=0.6$ and concludes that $a=0.2$					
(b) B1: 1.2×0.6 or 0.72 M1: A correct strategy identified for finding an area enclosed by the polar curve using a correct formula with r substituted. Attempt at area $=\frac{1}{2}\int \left(0.4+0.2\cos 2\theta\right)^2 \mathrm{d}\theta =$ Look for $=\lambda \times \frac{1}{2}\int \left(0.4+0.2\cos 2\theta\right)^2 \mathrm{d}\theta =$ If the $\frac{1}{2}$ is not explicitly seen then look at the limits and it must be either					
$= \int_0^{\pi} (0.4 + 0.2 \cos 2\theta)^2 d\theta = \dots \text{ or } = 2 \int_0^{\frac{\pi}{2}} (0.4 + 0.2 \cos 2\theta)^2 d\theta = \dots$					
Condone missing d θ					
M1: Squares to achieve three terms and uses $\cos^2 2\theta = \frac{\pm 1 \pm \cos 4\theta}{2}$ to obtain an expression in an					
integrable form. A1ft: Correct follow through integration as long as the previous two method marks have been awarded. dM1: Dependent of first method mark. Finds the required area enclosed by the curve using the correct limits. There are only three cases either $\frac{1}{2} \int_0^{2\pi} \left(0.4 + 0.2\cos 2\theta\right)^2 d\theta$ or $\int_0^{\pi} \left(0.4 + 0.2\cos 2\theta\right)^2 d\theta$ or					
$2\int_0^{\frac{\pi}{2}} (0.4 + 0.2\cos 2\theta)^2 d\theta$					
The use of the limit 0 can be implied if it gives 0 but the use of 0 must been seen or implied if it does not result in 0 (just writing 0 is insufficient)					

Area of wood = $1.2 \times 0.6 - 0.18\pi$

1.1b

M1

A1: Correct area of the glass following fully correct working. Do not award for the correct answer following incorrect working. M1: Subtracts their area of the glass from their area of the rectangle, as long as it does not give a negative area

A1: awrt 0.155 or awrt 0.155 m² (If the units are stated they must be correct)

Note: Using a calculator to find the area scores a maximum of B1M0M0A0M0A0M1A1