Question	Scheme	Marks	AOs
6	$\underline{\mathbf{Way 1}} \ \mathbf{f}(k+1) - \mathbf{f}(k)$		
	When $n = 1$, $3^{2n+4} - 2^{2n} = 729 - 4 = 725$ (725 = 145×5) so the statement is true for $n = 1$	B1	2.2a
	Assume true for $n = k$ so $3^{2k+4} - 2^{2k}$ is divisible by 5	M1	2.4
	$f(k+1)-f(k)=3^{2k+6}-2^{2k+2}-3^{2k+4}+2^{2k}$	M1	2.1
	either 8f $k + 5 \times 2^{2k}$ or 3f $k + 5 \times 3^{2k+4}$	A1	1.1b
	f $k+1 = 9f k + 5 \times 2^{2k}$ or f $k+1 = 4f k + 5 \times 3^{2k+4}$ o.e.	Al	1.1b
	If true for $n = k$ then it is true for	A1	2.4

$\underline{n = k + 1}$ and as it is <u>true for $n = 1$</u> , the statement is <u>true for all</u> (<u>positive integers</u>) \underline{n} . (Allow 'for all values')		
tpositive integersyn. (Allow Tor all values)	(6)	
$\underline{\mathbf{Way 2}} \mathbf{f}(k+1)$		
When $n = 1$, $3^{2n+4} - 2^{2n} = 729 - 4 = 725$ (725 = 145×5) so the statement is true for $n = 1$	В1	2.2a
Assume true for $n = k$ so $3^{2k+4} - 2^{2k}$ is divisible by 5	M1	2.4
$f(k+1) = 3^{2(k+1)+4} - 2^{2(k+1)} (= 3^{2k+6} - 2^{2k+2})$	M1	2.1
f $k+1 = 9f k + 5 \times 2^{2k}$ or $f k+1 = 4f k + 5 \times 3^{2k+4}$ o.e.	A1 A1	1.1b 1.1b
If true for $n = k$ then it is true for $n = k + 1$ and as it is true for $n = 1$, the statement is true for all (positive integers) n . (Allow 'for all values')	A1	2.4
	(6)	
$\mathbf{\underline{Way 3}} \ \mathbf{f}(k) = 5M$		
When $n = 1$, $3^{2n+4} - 2^{2n} = 729 - 4 = 725$ (725 = 145×5) so the statement is true for $n = 1$	B1	2.2a
Assume true for $n = k$ so $3^{2k+4} - 2^{2k} = 5M$	M1	2.4
$f(k+1) = 3^{2(k+1)+4} - 2^{2(k+1)} (= 3^{2k+6} - 2^{2k+2})$	M1	2.1
$(f(k+1) = 3^{2} \times 3^{2k+4} - 2^{2} \times 2^{2k} = 3^{2} \times (5M + 2^{2k+2}) - 2^{2} \times 2^{2k})$ $f(k+1) = 45M + 5 \times 2^{2k} \text{ o.e.}$ OR $(f(k+1) = 3^{2} \times 3^{2k+4} - 2^{2} \times 2^{2k} = 3^{2} \times 3^{2k+4} - 2^{2} \times (3^{2k+4} - 5M))$ $f(k+1) = 5 \times 3^{2k+4} + 20M \text{ o.e.}$	A1 A1	1.1b 1.1b
If true for $n = k$ then it is true for $n = k + 1$ and as it is true for $n = 1$, the statement is true for all (positive integers) n . (Allow 'for all values')	A1	2.4
	(6)	
$\underline{\mathbf{Wav}} \ 4 \ \mathbf{f}(k+1) + \mathbf{f}(k)$		
When $n = 1$, $3^{2n+4} - 2^{2n} = 729 - 4 = 725$ (725 = 145×5) so the statement is true for $n = 1$	B1	2.2a
Assume true for $n = k$ so $3^{2k+4} - 2^{2k}$ is divisible by 5	M1	2.4
$f(k+1) + f(k) = 3^{2k+6} - 2^{2k+2} + 3^{2k+4} - 2^{2k}$	M1	2.1
$f(k+1) + f(k) = 3^2 \times 3^{2k+4} - 2^2 \times 2^{2k} + 3^{2k+4} - 2^{2k}$	A1	1.1b

	leading to $10 \times 3^{2k+4} - 5 \times 2^{2k}$		
	$f k+1 = 5[2\times 3^{2k+4}-2^{2k}]-f(k)$ o.e.	A1	1.1b
	If true for $n = k$ then it is true for $n = k + 1$ and as it is true for $n = 1$, the statement is true for all (positive integers) n . (Allow 'for all values')	A1	2.4
		(6)	
	When $n = 1$, $3^{2n+4} - 2^{2n} = 729 - 4 = 725$ (725 = 145×5) so the statement is true for $n = 1$	B1	2.2a
	Assume true for $n = k$ so $3^{2k+4} - 2^{2k}$ is divisible by 5	M1	2.4
	$f(k+1)-'Mf(k)=3^{2k+6}-2^{2k+2}-'M'\times 3^{2k+4}+'M'\times 2^{2k}$	M1	2.1
	f $k+1$ -'Mf $k = 9$ -'M' $\times 3^{2k+4}$ - 4-'M' $\times 2^{2k}$	A1	1.1b
	f $k+1 = 9-'M' \times 3^{2k+4} - 4-'M' \times 2^{2k} + 'M'f k$ o.e.	A1	1.1b
	If true for $n = k$ then it is true for $n = k + 1$ and as it is true for $n = 1$, the statement is true for all (positive integers) n . (Allow 'for all values')	A1	2.4
		(6)	
		(6)	
	Notes	` '	marks)
Way 1 f()	Notes $(x+1) = f(k)$	` '	marks)
B1: Show this staten M1: Make n = k is s n = k the M1: Atter A1: Achie A1: Corre	Is the statement is true for $n = 1$. Needs to show $f(1) = 725$ and conclusion the statement in their conclusion if says e.g. true for $n = 1$ are an assumption statement that assumes the result is true for $n = k$. Assuming the same in their conclusion if they say e.getc and the same in their conclusion if they say e.getc and the same in t	on true for true (true g. if true	or <i>n</i> = 1, of for) for ed by

A1: Correct complete conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of all underlined points either at the end of their solution or as a narrative in their solution. **Way 3** f(k) = 5M

B1: Shows the statement is true for n = 1. Needs to show f(1) = 725 and conclusion true for n = 1,

n=k is sufficient. This mark may be recovered in their conclusion if they say e.g. if true for

A1: Correct complete conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of all underlined points either at the end of their solution or as a narrative in

this statement can be recovered in their conclusion if says e.g. true for n = 1. M1: Makes an assumption statement that assumes the result is true for n = k. Assume (true for)

their solution.

n = k then ...etc

M1: Attempts f(k+1)

A1: Correctly achieves either 45M or 5×2^{2k} or either 20M or $5 \times 3^{2k+4}$ A1: Achieves a correct expression for f(k+1) in terms of M and 2^{2k} or M and 3^{2k+4}

A1: Achieves a correct expression for f(k+1) in terms of f(k)

Way 4 f(k+1) + f(k)B1: Shows the statement is true for n = 1. Needs to show f(1) = 725 and conclusion true for n = 1,

this statement can be recovered in their conclusion if says e.g. true for n = 1M1: Makes an assumption statement that assumes the result is true for n = k. Assume (true for) n=k is sufficient. This mark may be recovered in their conclusion if they say e.g. if true for

n = k then ...etc M1: Attempts f(k+1) + f(k) or equivalent work

A1: Achieves a correct simplified expression for f(k+1) + f(k)A1: Achieves a correct expression for f $k+1 = 5[2 \times 3^{2k+4} - 2^{2k}] - f(k)$

A1: Correct complete conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of all underlined points either at the end of their solution or as a narrative in

their solution.

Notes continued

Way 5 f(k+1) - Mf(k) (Selects a suitable value for M which leads to divisibility of 5)

this statement can be recovered in their conclusion if says e.g. true for n = 1M1: Makes an assumption statement that assumes the result is true for n = k. Assume (true for)

n=k is sufficient. This mark may be recovered in their conclusion if they say e.g. if true for n = k then ...etc

M1: Attempts f(k+1) - Mf(k) or equivalent work

A1: Achieves a correct simplified expression, f k+1 -'Mf k which is divisible by 5

f k+1 -'Mf k = 9-'M' $\times 3^{2k+4}$ - 4-'M' $\times 2^{2k}$

A1: Achieves a correct expression for f k+1 = 9-'M' $\times 3^{2k+4}-4-$ 'M' $\times 2^{2k}+$ 'Mf k

which is divisible by 5

their solution.

A1: Correct complete conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of all underlined points either at the end of their solution or as a narrative in

B1: Shows the statement is true for n = 1. Needs to show f(1) = 725 and conclusion true for n = 1,