Question	Scheme	Marks	AOs
$7(a)$ Way 1	$\begin{aligned} & 1+2 \lambda=1+t \\ & -1-\lambda=-t \\ & 4+3 \lambda=3+2 t \\ & \Rightarrow t=\ldots \text { or } \lambda=\ldots \end{aligned}$	M1	3.1a
	Checks the third equation with $t=2$ and $\lambda=1$ Or shows that the coordinate $(3,-2,7)$ lies on both lines	A1	1.1 b
	As the lines intersect at a point the lines lie in the same plane.	A1	2.4
		(3)	
(a) Way 2	$1=1+2 \lambda+t$ $1=1+2 \lambda+t$ $-1=-\lambda-t$ $0=-1-\lambda-t$ $4=3+3 \lambda+2 t$ $3=4+3 \lambda+2 t$ $\Rightarrow t=\ldots$ or $\lambda=\ldots$ $\Rightarrow t=\ldots$ or $\lambda=\ldots$	M1	3.1a
	Checks the third equation with Checks the third equation with $t=2$ and $\lambda=-1$ $t=-2$ and $\lambda=1$	A1	1.1 b
	Second coordinates lie on the plane; therefore, the lines lie on the same plane	A1	2.4
		(3)	
(a) Way 3	$\begin{gathered} x=1+t, \quad y=-t, \quad z=3+2 t \\ \frac{1+t-1}{2}= \end{gathered}$ Solves a pair of equations $t=\ldots$	M1	3.1a
	Solve two pairs of equations to find $t=2$	A1	1.1 b
	As the lines intersect at a point the lines lie in the same plane.	A1	2.4
		(3)	
(a) Way 4 (Using Further Pure 2 knowled ge)	$\left(\begin{array}{r} 2 \\ -1 \\ 3 \end{array}\right) \cdot\left(\begin{array}{l} x \\ y \\ z \end{array}\right) \Rightarrow 2 x-y+3 z=0 \text { and }\left(\begin{array}{r} 1 \\ -1 \\ 2 \end{array}\right) \cdot\left(\begin{array}{l} x \\ y \\ z \end{array}\right) \Rightarrow x-y+2 z=0$ attempts to solve the equations to find a normal vector OR attempts the cross product $\left(\begin{array}{r}2 \\ -1 \\ 3\end{array}\right) \times\left(\begin{array}{r}1 \\ -1 \\ 2\end{array}\right)=\ldots$ AND either finds the equation of one plane $\mathbf{O R}$ finds dot product between the normal and one coordinate	M1	3.1a

	$\begin{gathered} \mathbf{r}\left(\begin{array}{r} 1 \\ -1 \\ -1 \end{array}\right)=\left(\begin{array}{r} 1 \\ -1 \\ 4 \end{array}\right) \cdot\left(\begin{array}{r} 1 \\ -1 \\ -1 \end{array}\right)=\ldots \text { or } \mathbf{r} \cdot\left(\begin{array}{r} 1 \\ -1 \\ -1 \end{array}\right)=\left(\begin{array}{l} 1 \\ 0 \\ 3 \end{array}\right) \cdot\left(\begin{array}{r} 1 \\ -1 \\ -1 \end{array}\right)=\ldots \\ \mathbf{O R}\left(\begin{array}{r} 1 \\ -1 \\ 4 \end{array}\right) \cdot\left(\begin{array}{r} 1 \\ -1 \\ -1 \end{array}\right)=\ldots \text { or }\left(\begin{array}{c} 1 \\ 0 \\ 3 \end{array}\right) \cdot\left(\begin{array}{r} 1 \\ -1 \\ -1 \end{array}\right)=\ldots \end{gathered}$		
	Achieves the correct planes containing each line r. $\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)=-2$ or $x-y-z=-2$ o.e. OR Shows that $\left(\begin{array}{r}1 \\ -1 \\ 4\end{array}\right) \cdot\left(\begin{array}{r}1 \\ -1 \\ -1\end{array}\right)=-2$ and $\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right) \cdot\left(\begin{array}{r}1 \\ -1 \\ -1\end{array}\right)=-2$ o.e.	A1	1.1b
	Both planes are the same, therefore the lines lie in the same plane.	A1	2.4
		(3)	
(b)	$\begin{gathered} \text { e.g. } \mathbf{r}=\left(\begin{array}{l} 1 \\ 0 \\ 3 \end{array}\right)+p\left(\begin{array}{r} 2 \\ -1 \\ 3 \end{array}\right)+q\left(\begin{array}{r} 1 \\ -1 \\ 2 \end{array}\right) \text { or } \mathbf{r}=\left(\begin{array}{r} 1 \\ -1 \\ 4 \end{array}\right)+p\left(\begin{array}{r} 2 \\ -1 \\ 3 \end{array}\right)+q\left(\begin{array}{r} 1 \\ -1 \\ 2 \end{array}\right) \\ \text { or } \mathbf{r}=\left(\begin{array}{r} 3 \\ -2 \\ 7 \end{array}\right)+p\left(\begin{array}{r} 2 \\ -1 \\ 3 \end{array}\right)+q\left(\begin{array}{r} 1 \\ -1 \\ 2 \end{array}\right) \text { or } \mathbf{r}=\left(\begin{array}{r} 3 \\ -2 \\ 7 \end{array}\right)+p\left(\begin{array}{r} 0 \\ -1 \\ 1 \end{array}\right)+q\left(\begin{array}{r} 1 \\ -1 \\ 2 \end{array}\right) \\ \text { or } \mathbf{r} \cdot k\left(\begin{array}{r} 1 \\ -1 \\ -1 \end{array}\right)=-2 k \end{gathered}$	B1	2.5
		(1)	
$\begin{gathered} \text { (c) } \\ \text { Way } 1 \end{gathered}$	$\left(\begin{array}{r}2 \\ -1 \\ 3\end{array}\right) \cdot\left(\begin{array}{r}1 \\ -1 \\ 2\end{array}\right)=2+1+6$	M1	1.1b
	$\begin{aligned} & \sqrt{2^{2}+(-1)^{2}+3^{2}} \sqrt{1^{2}+(-1)^{2}+2^{2}} \cos \theta=9 \\ & \Rightarrow \cos \theta=\frac{9}{\sqrt{2^{2}+(-1)^{2}+3^{2}} \sqrt{1^{2}+(-1)^{2}+2^{2}}} \end{aligned}$	dM1	2.1
	$\theta=11 \mathrm{cao}$	A1	1.1b
		(3)	

Way 2 (Using Further Pure 2 knowled ge)	$\left(\begin{array}{r}2 \\ -1 \\ 3\end{array}\right) \times\left(\begin{array}{r}1 \\ -1 \\ 2\end{array}\right)=\left(\begin{array}{r}1 \\ -1 \\ -1\end{array}\right)$	M1	1.1b
	$\sqrt{2^{2}+(-1)^{2}+3^{2}} \sqrt{1^{2}+(-1)^{2}+2^{2}} \sin \theta=\sqrt{1^{2}+(-1)^{2}+(-1)^{2}}$		
	$\Rightarrow \sin \theta=\frac{\sqrt{1^{2}+(-1)^{2}+(-1)^{2}}}{\sqrt{2^{2}+(-1)^{2}+3^{2}} \sqrt{1^{2}+(-1)^{2}+2^{2}}}$	dM 1	2.1
	$\theta=11 \mathrm{cao}$	A	1.1 b

Notes

(a)

Allow using $\left(\begin{array}{l}1 \\ 3 \\ 0\end{array}\right)$ instead of $\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right)$ for the method mark.

Way 1

M1: Starts by attempting to find where the two lines intersect. They must set up a parametric equation for line 1 (allow sign slips and as long as the intention is clear), forms simultaneous equations by equating coordinates and attempts to solve to find a value for $t=\ldots$ or $\lambda=\ldots$.
A1: Shows that there is a unique solution by checking the third equation or shows that the coordinate $(3,-2,7)$ lies on both lines.
A1: Achieves the correct values $t=2$ and $\lambda=1$, checks the third equation and concludes that either

- a common point,
- the lines intersect
- the equations are consistent
therefore, the lines lie in the same plane

Way 2

M1: Finds the vector equation of the plane with the both direction vectors and one coordinate (allow a sign slip), sets equal to the other coordinate, forms simultaneous equations and attempts to solve to find a value for $t=\ldots$ or $\lambda=\ldots$.
A1: Shows that the other coordinate lies on the plane by checking the third equation.
A1: Achieves the correct values $t=-2$ and $\lambda=1$ or $t=2$ and $\lambda=-1$ and concludes that the second coordinate lie on the plane; therefore, the lines lie on the same plane

Way 3

M1: Substitutes line 2 into line 1 and solves a pair of equations to find a value for t. Allow slip with the position of 0 and sign slips as long as the intention is clear.

A1: Solve two pairs of equations to achieve $t=2$ for each.
A1: Achieves the correct value $t=2$ and concludes that either

- a common point,
- the lines intersect
- the equations are consistent therefore, the lines lie in the same plane

Way 4 (Using Further Pure 2 knowledge)

M1: A complete method to finds a vector which is normal to both lines and attempts to finds the equation of the plane containing one line.
A1: Achieves the correct equation for the plane containing each line.
A1: Conclusion, planes are the same, therefore the lines lie in the same plane.
(b) This may be seen in part (a)

B1: Correct vector equation allow any letter for the scalers.
Must start with $\mathbf{r}=\ldots$ and uses two out of the following direction vectors $\pm\left(\begin{array}{r}1 \\ -1 \\ 2\end{array}\right), \pm\left(\begin{array}{r}2 \\ -1 \\ 3\end{array}\right)$ or
$\pm\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)$ and one of the following position vectors $\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right),\left(\begin{array}{r}1 \\ -1 \\ 4\end{array}\right)$ or $\left(\begin{array}{r}3 \\ -2 \\ 7\end{array}\right)$
(c)

Way 1

M1: Calculates the scalar product between the direction vectors, allow one slip, if the intention is clear
dM1: Dependent on the previous method mark. Applies the scalar product formula with their scalar product to find a value for $\cos \theta$
A1: Correct answer only

Way 2 (Using Further Pure 2 knowledge)

M1: Calculates the vector product between the direction vectors, allow one slip, if the intention is clear
dM1: Dependent on the previous method mark. Applies the vector product formula with their vector product to find a value for $\sin \theta$
A1: Correct answer only

