Question	Scheme	Marks	AOs
7(a) Way 1	$1+2\lambda = 1+t$ $-1-\lambda = -t$ $4+3\lambda = 3+2t$ $\Rightarrow t = \dots \text{ or } \lambda = \dots$	Ml	3.1a
	Checks the third equation with $t = 2$ and $\lambda = 1$ Or shows that the coordinate (3, -2, 7) lies on both lines	Al	1.1b
	As the lines intersect at a point the lines lie in the same plane.	Al	2.4
		(3)	
(a) Way 2	$1 = 1 + 2\lambda + t$ $-1 = -\lambda - t$ $4 = 3 + 3\lambda + 2t$ $\Rightarrow t = \dots \text{ or } \lambda = \dots$ $1 = 1 + 2\lambda + t$ $0 = -1 - \lambda - t$ $3 = 4 + 3\lambda + 2t$ $\Rightarrow t = \dots \text{ or } \lambda = \dots$	M1	3.1a
	Checks the third equation with $t = 2$ and $\lambda = -1$ Checks the third equation with $t = -2$ and $\lambda = 1$	Al	1.1b
	Second coordinates lie on the plane; therefore, the lines lie on the same plane	Al	2.4
		(3)	
(a) Way 3	$x = 1+t, y = -t, z = 3+2t$ $\frac{1+t-1}{2} = \frac{-t+1}{-1} = \frac{3+2t-4}{3}$ Solves a pair of equations $t = \dots$	M1	3.1a
	Solve two pairs of equations to find $t = 2$	Al	1.1b
	As the lines intersect at a point the lines lie in the same plane.	Al	2.4
		(3)	
(a) Way 4 (Using Further Pure 2 knowled ge)	$ \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Rightarrow 2x - y + 3z = 0 \text{ and } \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Rightarrow x - y + 2z = 0 $ attempts to solve the equations to find a normal vector OR attempts the cross product $ \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \times \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \dots $ AND either finds the equation of one plane OR finds dot product between the normal and one coordinate	M1	3.1a

	$\mathbf{r} \cdot \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix} = \dots \text{ or } \mathbf{r} \cdot \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = \dots$ $\mathbf{OR} \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = \dots \text{ or } \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix} = \dots$		
	Achieves the correct planes containing each line $\mathbf{r} \cdot \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \end{bmatrix} = -2 \text{ or } x - y - z = -2 \text{ o.e.}$ OR \mathbf{OR} Shows that $\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \end{bmatrix} = -2 \text{ and } \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \end{bmatrix} = -2 \text{ o.e.}$	A1	1.1b
	Both planes are the same, therefore the lines lie in the same plane.	A1	2.4
1		(3)	
(b)	e.g. $\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} + p \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + q \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} + p \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + q \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 3 \\ -2 \\ 7 \end{pmatrix} + p \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + q \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 3 \\ -2 \\ 7 \end{pmatrix} + p \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} + q \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ or $\mathbf{r} \cdot k \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = -2k$	B1	2.5
1		(1)	
(c) Way 1	$\begin{pmatrix} 2\\-1\\3 \end{pmatrix} \cdot \begin{pmatrix} 1\\-1\\2 \end{pmatrix} = 2+1+6$	M1	1.1b
	$\sqrt{2^{2} + (-1)^{2} + 3^{2}} \sqrt{1^{2} + (-1)^{2} + 2^{2}} \cos \theta = 9$ $\Rightarrow \cos \theta = \frac{9}{\sqrt{2^{2} + (-1)^{2} + 3^{2}} \sqrt{1^{2} + (-1)^{2} + 2^{2}}}$	dM1	2.1
	$\theta = 11$ cao	Al	1.1b
		(3)	

Way 1

M1: Starts by attempting to find where the two lines intersect. They must set up a parametric equation for line 1 (allow sign slips and as long as the intention is clear), forms simultaneous equations by equating coordinates and attempts to solve to find a value for t = ... or $\lambda = ...$ A1: Shows that there is a unique solution by checking the third equation or shows that the coordinate (3, -2, 7) lies on both lines.

A1: Achieves the correct values t = 2 and $\lambda = 1$, checks the third equation and concludes that either

- a common point,
- the lines intersect
- the equations are consistent

therefore, the lines lie in the same plane

Way 2

M1: Finds the vector equation of the plane with the both direction vectors and one coordinate (allow a sign slip), sets equal to the other coordinate, forms simultaneous equations and attempts to solve to find a value for $t = \dots$ or $\lambda = \dots$.

A1: Shows that the other coordinate lies on the plane by checking the third equation.

A1: Achieves the correct values t = -2 and $\lambda = 1$ or t = 2 and $\lambda = -1$ and concludes that the second coordinate lie on the plane; therefore, the lines lie on the same plane

<u>Way 3</u>

M1: Substitutes line 2 into line 1 and solves a pair of equations to find a value for *t*. Allow slip with the position of 0 and sign slips as long as the intention is clear.

A1: Solve two pairs of equations to achieve t = 2 for each.

A1: Achieves the correct value t = 2 and concludes that either

- a common point,
- the lines intersect
- the equations are consistent

therefore, the lines lie in the same plane

Way 4 (Using Further Pure 2 knowledge)

M1: A complete method to finds a vector which is normal to both lines and attempts to finds the equation of the plane containing one line.

A1: Achieves the correct equation for the plane containing each line.

A1: Conclusion, planes are the same, therefore the lines lie in the same plane.

(b) This may be seen in part (a)

B1: Correct vector equation allow any letter for the scalers.

Must start with $\mathbf{r} = \dots$ and uses two out of the following direction vectors $\pm \begin{vmatrix} -1 \end{vmatrix}$

$$\pm \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \pm \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \text{ or }$$

(1)

 $\langle a \rangle$

$$\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \text{ and one of the following position vectors} \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} \text{ or } \begin{pmatrix} 3 \\ -2 \\ 7 \end{pmatrix}$$

(c)

Way 1

M1: Calculates the scalar product between the direction vectors, allow one slip, if the intention is clear

dM1: Dependent on the previous method mark. Applies the scalar product formula with their scalar product to find a value for $\cos\theta$

A1: Correct answer only

Way 2 (Using Further Pure 2 knowledge)

M1: Calculates the vector product between the direction vectors, allow one slip, if the intention is clear

dM1: Dependent on the previous method mark. Applies the vector product formula with their vector product to find a value for $\sin\theta$

A1: Correct answer only