5.	A tank at a chemical plant has a capacity of 250 litres. The tank initially contains 100 litres of pure water.	
	Salt water enters the tank at a rate of 3 litres every minute. Each litre of salt water entering the tank contains 1 gram of salt.	
	It is assumed that the salt water mixes instantly with the contents of the tank upon entry.	
	At the instant when the salt water begins to enter the tank, a valve is opened at the bottom of the tank and the solution in the tank flows out at a rate of 2 litres per minute.	
	Given that there are S grams of salt in the tank after t minutes,	
	(a) show that the situation can be modelled by the differential equation	
	$\frac{\mathrm{d}S}{\mathrm{d}t} = 3 - \frac{2S}{100 + t}$	
		(4)
	(b) Hence find the number of grams of salt in the tank after 10 minutes.	(5)
	When the concentration of salt in the tank reaches 0.9 grams per litre, the valve at the bottom of the tank must be closed.	
	(c) Find, to the nearest minute, when the valve would need to be closed.	(3)
	(d) Evaluate the model.	(1)