7. The line l_1 has equation

The line
$$l_2$$
 has equation

where
$$t$$
 is a scalar parameter.

(a) Show that l_1 and l_2 lie in the same plane.

Show that
$$l_1$$
 and l_2 lie in the same pla

a vector equation for the plane containing
$$l$$
, and l .

 $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-4}{3}$

 $\mathbf{r} = \mathbf{i} + 3\mathbf{k} + t(\mathbf{i} - \mathbf{i} + 2\mathbf{k})$

(3)

(b) Write down a vector equation for the plane containing
$$l_1$$
 and l_2

(1) (c) Find, to the nearest degree, the acute angle between l_1 and l_2