Question	Scheme	Marks	AOs
3 (a)	$\det \mathbf{A} = k^2 + 2(1 - k) = (k - 1)^2 + 1 \text{ or uses quadratic}$ formula/discriminant = $(-2)^2 - 4(1)(2)$	M1	2.1
	$(k-1)^2 + 1 \ge 1$ or discriminant = $-4 < 0$ therefore A is non-singular for all values of k .	A1	2.4
		(2)	
(b)	$\binom{k}{1-k} - \binom{2}{k} \binom{a}{2a} = \binom{7}{-3} \Rightarrow \text{ at least one equation}$ $ka - 4a = 7$ $(1-k)a + 2ak = -3$	M1	3.1a
	Solves simultaneously to find a value for either a or k e.g $a + 2ak = -3 \Rightarrow ak = -3 - a$ $\Rightarrow -3 - a - 4a = 7 \Rightarrow a =$	M1	1.1b
	$\Rightarrow -3 - a - 4a = 7 \Rightarrow a = \dots$ $a = -2, k = \frac{1}{2}$	A1	1.1b
		(3)	
(c)	$\binom{k}{1-k} - \binom{x}{k} \binom{x}{2x} = \binom{X}{2X} \Rightarrow \text{ at least one equation}$ $kx - 4x = X$ $(1-k)x + 2kx = 2X$	M1	3.1a
	$2(kx-4x) = (1-k)x + 2xk \Longrightarrow k = \dots$	M1	1.1b
	k = 9	A1	1.1b
		(3)	
(8 marks)			
Notes:			
 (a) M1: Finds the determinant and chooses an appropriate method to show that the resulting quadratic has no real roots. A1: Complete process to show discriminant > 0 and draws the conclusion that A is non-singular for all values of k. 			
 (b) M1: Translates the problem into a matrix multiplication to obtain at least one equation. M1: Solves simultaneously to find a value for either a or k A1: Correct values for both a and k 			
(c) M1: Translates the problem into a matrix multiplication to obtain at least one equation. M1: Solves simultaneously to find a value of k A1: Correct value for k			