6(i)	$n=1, \text { LHS }=2 \times 4=8, \text { RHS }=\frac{2}{3}(1)(1+1)(1+5)=8$ So the result is true for $n=1$	B1	2.2a
	Assume true for $n=k$ $\sum_{r=1}^{k} 2 r(r+3)=\frac{2}{3} k(k+1)(k+5)$	M1	2.4
	$\sum_{r=1}^{k+1} 2 r(r+3)=\frac{2}{3} k(k+1)(k+5)+2(k+1)(k+1+3)$	M1	1.1b
	$=\frac{2}{3}(k+1)[k(k+5)+3(k+4)] \text { or } \frac{2}{3}(k+1)\left[k^{2}+8 k+12\right]$	A1	1.1b
	$=\frac{2}{3}(k+1)(k+2)(k+6)$	A1	2.1
	If true for $\boldsymbol{n}=\boldsymbol{k}$ then true for $\boldsymbol{n}=\boldsymbol{k}+\mathbf{1}$ and as it is true for $\boldsymbol{n}=\mathbf{1}$ the statement is true for all (positive integers) \boldsymbol{n}	A1	2.4
		(6)	
(ii)(a)	$n=1,\left(\begin{array}{ll} 5 & -8 \\ 2 & -3 \end{array}\right)^{1}=\left(\begin{array}{ll} 5 & -8 \\ 2 & -3 \end{array}\right) ;\left(\begin{array}{cc} 1+4(1) & -8(1) \\ 2(1) & 1-4(1) \end{array}\right)=\left(\begin{array}{ll} 5 & -8 \\ 2 & -3 \end{array}\right)$ So the result is true for $n=1$	B1	2.2a
	Assume true for $n=k\left(\begin{array}{ll}5 & -8 \\ 2 & -3\end{array}\right)^{k}=\left(\begin{array}{cc}1+4 k & -8 k \\ 2 k & 1-4 k\end{array}\right)$	M1	2.4
	$\begin{aligned} & \left(\begin{array}{ll} 5 & -8 \\ 2 & -3 \end{array}\right)^{k+1}=\left(\begin{array}{cc} 1+4 k & -8 k \\ 2 k & 1-4 k \end{array}\right)\left(\begin{array}{ll} 5 & -8 \\ 2 & -3 \end{array}\right) \\ & \text { or } \end{aligned}\left(\begin{array}{ll} 5 & -8 \\ 2 & -3 \end{array}\right)^{k+1}=\left(\begin{array}{ll} 5 & -8 \\ 2 & -3 \end{array}\right)\left(\begin{array}{cc} 1+4 k & -8 k \\ 2 k & 1-4 k \end{array}\right) .$	M1	1.1b
	$\begin{aligned} & \left(\begin{array}{cc} 1+4 k & -8 k \\ 2 k & 1-4 k \end{array}\right)\left(\begin{array}{ll} 5 & -8 \\ 2 & -3 \end{array}\right) \\ & \quad=\left(\begin{array}{cc} 5(1+4 k)-16 k & -8(1+4 k)-3(-8 k) \\ 5(2 k)+2(1-4 k) & -8(2 k)-3(1-4 k) \end{array}\right) \\ & \left.\begin{array}{rl} 5 & -8 \\ 2 & -3 \end{array}\right)\left(\begin{array}{cc} 1+4 k & -8 k \\ 2 k & 1-4 k \end{array}\right) \\ & \\ & \quad=\left(\begin{array}{ll} 5(1+4 k)-8(2 k) & 5(-8 k)-8(1-4 k) \\ 2(1+4 k)-3(2 k) & 2(-8 k)-3(1-4 k) \end{array}\right) \end{aligned}$	A1	1.1b
	$\left(\begin{array}{cc}1+4(k+1) & -8(k+1) \\ 2(k+1) & 1-4(k+1)\end{array}\right)$	A1	2.1
	If true for $\boldsymbol{n}=\boldsymbol{k}$ then true for $\boldsymbol{n}=\boldsymbol{k}+\mathbf{1}$ and as it is true for $\boldsymbol{n}=\mathbf{1}$ the statement is true for all (positive integers) \boldsymbol{n}	A1	2.4
		(6)	

```
Either
\(\operatorname{det}\left(\mathbf{M}^{n}\right)=(1+4 n)(1-4 n)-(-8 n)(2 n)=1\)
or
    \(\operatorname{det}(\mathbf{M})=-15+16=1\)
```


Either

$\operatorname{det}\left(\mathbf{M}^{n}\right)=1$
or
$\operatorname{det}\left(\mathbf{M}^{n}\right)=(\operatorname{det} \mathbf{M})^{n}=1$

Therefore $\operatorname{det}\left(\mathbf{M}^{n}\right)$ is independent of \boldsymbol{n}

Notes:

(i)

B1: Shows that the result holds for $n=1$. Must see substitution in the RHS and LHS and reach 8
M1: Makes a statement that assumes the result is true for some value of n
M1: Set up sum with assumed formula $2(k+1)(k+1+3)$
A1: Achieves a correct expression with a factor of $\frac{2}{3}(k+1)$
A1: Reaches a correct simplified expression with no errors and the correct unsimplified expression with a factor of $\frac{2}{3}(k+1)$ seen previously.
A1: Correct conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of all four bold points either at the end of their solution or as a narrative in their solution
(ii) (a)

B1: Shows that the result holds for $n=1$. Must see substitution in the RHS and reach $\left(\begin{array}{ll}5 & -8 \\ 2 & -3\end{array}\right)$
M1: Makes a statement that assumes the result is true for some value of n
M1: Set up a matrix multiplication of the assumed result multiplied by the original matrix, either way round
A1: Achieves a correct unsimplified matrix
A1: Reaches a correct simplified matrix with no errors and the correct unsimplified matrix seen previously.
A1: Correct conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of all four bold points either at the end of their solution or as a narrative in their solution.
(ii) (b)

M1: Finds the determinant of matrix \mathbf{M}^{n} or matrix \mathbf{M}
A1: Shows that $\operatorname{det}\left(\mathbf{M}^{n}\right)=1$, therefore independent of n

