$$
\mathbf{A}=\left(\begin{array}{cc}
k & -2 \\
1-k & k
\end{array}\right) \quad \text { where } k \text { is a constant }
$$

(a) Show that the matrix \mathbf{A} is non-singular for all values of k.

A transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is represented by the matrix \mathbf{A}.
The point P has position vector $\binom{a}{2 a}$ relative to an origin O.
The point Q has position vector $\binom{7}{-3}$ relative to O.
Given that the point P is mapped onto the point Q under T,
(b) determine the value of a and the value of k.

Given that, for a different value of k, T maps the line $y=2 x$ onto itself,
(c) determine this value of k.

