7. The curve C has Cartesian equation

$$
\left(x^{2}+y^{2}\right)^{2}=6 x y \quad x>0, y>0
$$

(a) Show that for $0<\theta<\frac{\pi}{2}$ the equation for C can be written as the polar equation

$$
\begin{equation*}
r^{2}=3 \sin 2 \theta \tag{3}
\end{equation*}
$$

Figure 1
Figure 1 shows a sketch of the curve C. The tangent to C at the point A is parallel to the initial line.

The finite region R, shown shaded in Figure 1, is bounded by C, the tangent to the curve at the point A and the line with equation $\theta=\frac{\pi}{2}$
(b) Use calculus to determine the area of the shaded region R.

