

Figure 2
A child plays on a rope swing.
One end of the rope is attached to a tree and the child sits on a large knot at the other end of the rope.
The child swings back and forth in a vertical plane.
The rope is modelled as a light and inextensible string. The child is modelled as a particle.
Figure 2 represents the child and the rope swing. The rope is attached to the tree at the point O and the point C is vertically below O. The point P represents the child.

The horizontal displacement of P from the line $O C$ at time t seconds $(t \geqslant 0)$ is x metres, as shown in Figure 2.

The motion of P is modelled by the differential equation

$$
\ddot{x}+2 \dot{x}+\lambda x=0
$$

where λ is a positive constant.
The child is initially at rest, at the point A, with a horizontal displacement of 1.5 m from the line $O C$.

Given that the initial horizontal acceleration of the child is $-7.5 \mathrm{~ms}^{-2}$
(a) show that $\lambda=5$

Using the model,
(b) find an expression for the horizontal displacement of the child at time t.

Given that, when $t=4.5$, the child is vertically below O,
(c) evaluate the model explaining your reasoning.
(d) Suggest one refinement for the model.

