Question	Scheme	Marks	AOs
3	$3(1-\sin\theta) = 1+\sin\theta \Rightarrow \sin\theta = \frac{1}{2} \Rightarrow \theta = \dots$	M1	3.1a
	$\theta = \frac{\pi}{6} \left(\operatorname{or} \frac{5\pi}{6} \right)$	A1	1.1b
	Use of $\frac{1}{2}\int (1+\sin\theta)^2 d\theta$ or $\frac{1}{2}\int \{3(1-\sin\theta)\}^2 d\theta$	M1	1.1a
	$\left(\frac{1}{2}\right)\int \left[\left(1+\sin\theta\right)^2-9\left(1-\sin\theta\right)^2\right]d\theta$		
	$= \left(\frac{1}{2}\right) \int \left[1 + 2\sin\theta + \sin^2\theta - 9 + 18\sin\theta - 9\sin^2\theta\right] d\theta$	M1	2.1
	or $\int (1 - 1)^2 dx \int (1 - 2 - 1) dx dx$	A1	1.1b
	$\int (1+\sin\theta)^2 d\theta = \int (1+2\sin\theta+\sin^2\theta) d\theta \text{ and}$		
	$\int 9(1-\sin\theta)^2 d\theta = 9 \int (1-2\sin\theta+\sin^2\theta) d\theta$		
	$\int \sin^2\theta \mathrm{d}\theta = \frac{1}{2} \int (1 - \cos 2\theta) \mathrm{d}\theta \Longrightarrow$	M1	3.1a
	$\int \left[\left(1 + \sin \theta \right)^2 - 9 \left(1 - \sin \theta \right)^2 \right] d\theta = 2 \sin 2\theta - 12\theta - 20 \cos \theta$	A1	1.1b
	$A = \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \left[\left(1 + \sin \theta \right)^2 - 9 \left(1 - \sin \theta \right)^2 \right] \mathrm{d}\theta$		
	or		2 1
	$A = 2 \times \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \left[\left(1 + \sin \theta \right)^2 - 9 \left(1 - \sin \theta \right)^2 \right] \mathrm{d}\theta$	DMI	3.1a
	$= \frac{1}{2} \left\{ \left(-\sqrt{3} - 10\pi + 10\sqrt{3} \right) - \left(\sqrt{3} - 2\pi - 10\sqrt{3} \right) \right\} = \dots$		
	$=9\sqrt{3}-4\pi$	Al	1.1b
		(9)	
(9 marks)			
Notes			

M1: Realises that the angles at the intersection are required and solves $C_1 = C_2$ to obtain a value for θ

A1: Correct value for θ . Must be in radians – if given in degrees you may need to check later to see if they convert to radians before substitution.

M1: Evidence selecting the correct polar area formula on either curve

M1: Fully expands both expressions for r^2 either as parts of separate integrals or as one complete integral. (Can be scored from incorrect polar area formula, e.g. missing the ½)

A1: Correct expansions for both curves (may be unsimplified)

M1: Selects the correct strategy by applying the correct double angle identity in order to reach an integrable form and attempting the integration of at least one of the curves. A1: Correct integration (of both integrals if done separately), FYI: If done separately the correct integrals are

$$\int (1+\sin\theta)^2 d\theta = \theta - 2\cos\theta + \frac{1}{2} \left(\theta - \frac{1}{2}\sin 2\theta\right) = \frac{3}{2}\theta - 2\cos\theta - \frac{1}{4}\sin 2\theta \text{ and}$$
$$\int 9(1-\sin\theta)^2 d\theta = 9\theta + 18\cos\theta + \frac{9}{2} \left(\theta - \frac{1}{2}\sin 2\theta\right) = \frac{27}{2}\theta + 18\cos\theta - \frac{9}{4}\sin 2\theta$$

DM1: Depends on all previous M's. For a fully correct strategy with appropriate limits correctly applied to their integral or integrals and terms combined if necessary. Make sure that if limits of

$$\frac{\pi}{6}$$
 and $\frac{\pi}{2}$ are used that the area is doubled as part of the strategy.

A1: Correct area