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Notes

M1: Realises that the angles at the intersection are required and solves Ci = C; to obtain a value
for 6

Al: Correct value for 6. Must be in radians — if given in degrees you may need to check later to
see if they convert to radians before substitution.

M1: Evidence selecting the correct polar area formula on either curve

M1: Fully expands both expressions for r’ either as parts of separate integrals or as one complete
integral. (Can be scored from incorrect polar area formula, e.g. missing the %)

A1l: Correct expansions for both curves (may be unsimplified)




M1: Selects the correct strategy by applying the correct double angle identity in order to reach an
integrable form and attempting the integration of at least one of the curves.

Al: Correct integration (of both integrals if done separately),

FYT: If done separately the correct integrals are

j(1+sin0) dg=0- 2cos@+2(9—Esm29j—29—20059—%sin20 and

j9(l—sin«9) d0=96+18cos O+ 9(9—5511129}:2—2749+18c056?—%sin26?

DMI1: Depends on all previous M’s. For a fully correct strategy with appropriate limits correctly

applied to their integral or integrals and terms combined if necessary. Make sure that if limits of

% and % are used that the area is doubled as part of the strategy.

Al: Correct area




