Question	Scheme	Marks	AOs
3	$3(1-\sin \theta)=1+\sin \theta \Rightarrow \sin \theta=\frac{1}{2} \Rightarrow \theta=\ldots$	M1	3.1a
	$\theta=\frac{\pi}{6}\left(\right.$ or $\left.\frac{5 \pi}{6}\right)$	A1	1.1b
	Use of $\frac{1}{2} \int(1+\sin \theta)^{2} \mathrm{~d} \theta$ or $\frac{1}{2} \int\{3(1-\sin \theta)\}^{2} \mathrm{~d} \theta$	M1	1.1a
	$\begin{aligned} & \left(\frac{1}{2}\right) \int\left[(1+\sin \theta)^{2}-9(1-\sin \theta)^{2}\right] \mathrm{d} \theta \\ & =\left(\frac{1}{2}\right) \int\left[1+2 \sin \theta+\sin ^{2} \theta-9+18 \sin \theta-9 \sin ^{2} \theta\right] \mathrm{d} \theta \\ & \quad \int(1+\sin \theta)^{2} \mathrm{~d} \theta=\int\left(1+2 \sin \theta+\sin ^{2} \theta\right) \mathrm{d} \theta \text { and } \\ & \quad \int 9(1-\sin \theta)^{2} \mathrm{~d} \theta=9 \int\left(1-2 \sin \theta+\sin ^{2} \theta\right) \mathrm{d} \theta \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} 2.1 \\ 1.1 \mathrm{~b} \end{gathered}$
	$\begin{gathered} \int \sin ^{2} \theta \mathrm{~d} \theta=\frac{1}{2} \int(1-\cos 2 \theta) \mathrm{d} \theta \Rightarrow \\ \left.\int(1+\sin \theta)^{2}-9(1-\sin \theta)^{2}\right] \mathrm{d} \theta=2 \sin 2 \theta-12 \theta-20 \cos \theta \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\begin{gathered} A=\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}}\left[(1+\sin \theta)^{2}-9(1-\sin \theta)^{2}\right] \mathrm{d} \theta \\ \\ \text { or } \\ A=2 \times \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\left[(1+\sin \theta)^{2}-9(1-\sin \theta)^{2}\right] \mathrm{d} \theta \\ =\frac{1}{2}\{(-\sqrt{3}-10 \pi+10 \sqrt{3})-(\sqrt{3}-2 \pi-10 \sqrt{3})\}=\ldots \end{gathered}$	DM1	3.1a
	$=9 \sqrt{3}-4 \pi$	A1	1.1b
		(9)	

(9 marks)

Notes

M1: Realises that the angles at the intersection are required and solves $C_{1}=C_{2}$ to obtain a value for θ
A1: Correct value for θ. Must be in radians - if given in degrees you may need to check later to see if they convert to radians before substitution.
M1: Evidence selecting the correct polar area formula on either curve
M1: Fully expands both expressions for r^{2} either as parts of separate integrals or as one complete integral. (Can be scored from incorrect polar area formula, e.g. missing the $1 / 2$)
A1: Correct expansions for both curves (may be unsimplified)

M1: Selects the correct strategy by applying the correct double angle identity in order to reach an integrable form and attempting the integration of at least one of the curves.
A1: Correct integration (of both integrals if done separately),
FYI: If done separately the correct integrals are
$\int(1+\sin \theta)^{2} \mathrm{~d} \theta=\theta-2 \cos \theta+\frac{1}{2}\left(\theta-\frac{1}{2} \sin 2 \theta\right)=\frac{3}{2} \theta-2 \cos \theta-\frac{1}{4} \sin 2 \theta$ and
$\int 9(1-\sin \theta)^{2} \mathrm{~d} \theta=9 \theta+18 \cos \theta+\frac{9}{2}\left(\theta-\frac{1}{2} \sin 2 \theta\right)=\frac{27}{2} \theta+18 \cos \theta-\frac{9}{4} \sin 2 \theta$
DM1: Depends on all previous M's. For a fully correct strategy with appropriate limits correctly applied to their integral or integrals and terms combined if necessary. Make sure that if limits of $\frac{\pi}{6}$ and $\frac{\pi}{2}$ are used that the area is doubled as part of the strategy.
A1: Correct area

