Question	Scheme	Marks	AOs
4(a)	Attempts normal vector: E.g. let $\mathbf{n}=a \mathbf{i}+b \mathbf{j}+\mathbf{k}$ then $a+2 b-3=0,-a+2 b+1=0$ $\Rightarrow a=\ldots, b=\ldots$ or $\mathbf{n}=(\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}) \times(-\mathbf{i}+2 \mathbf{j}+\mathbf{k})$	M1	3.1a
	$\mathbf{n}=k(4 \mathbf{i}+\mathbf{j}+2 \mathbf{k})$	A1	1.1b
	$(4 \mathbf{i}+\mathbf{j}+2 \mathbf{k}) \cdot(2 \mathbf{i}+4 \mathbf{j}-\mathbf{k})=\ldots$	M1	1.1b
	$4 x+y+2 z=10$	A1	2.5
		(4)	
	Alternative:		
	$\begin{aligned} & x=2+\lambda-\mu \\ & y=4+2 \lambda+2 \mu \Rightarrow 2 x+y=8+4 \lambda \\ & z=-1-3 \lambda+\mu \end{aligned} \Rightarrow y-2 z=6+8 \lambda$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\begin{gathered} 2(2 x+y-8)=y-2 z-6 \\ (4 x+y+2 z=10) \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} 1.1 \mathrm{~b} \\ 2.5 \end{gathered}$
		(4)	
(b)	$\begin{gathered} \frac{x-1}{5}=\frac{y-3}{-3}=\frac{z+2}{4} \Rightarrow \mathbf{r}=\mathbf{i}+3 \mathbf{j}-2 \mathbf{k}+\lambda(5 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k}) \\ 4(1+5 \lambda)+3-3 \lambda+2(4 \lambda-2)=10 \Rightarrow \lambda=\ldots \end{gathered}$	M1	3.1a
	$\lambda=\frac{7}{25} \Rightarrow \mathbf{r}=\mathbf{i}+3 \mathbf{j}-2 \mathbf{k}+\frac{7}{25}(5 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k})$	dM1	1.1b
	$\left(\frac{12}{5}, \frac{54}{25},-\frac{22}{25}\right)$	A1	1.1b
		(3)	
	Alternative: $4 x+\left(-\frac{3}{5}(x-1)+3\right)+2\left(\frac{4}{5}(x-1)-2\right)=10 \Rightarrow x=\ldots$	M1	3.1a
	$\Rightarrow y=\ldots, z=\ldots$	M1	1.1b
	$\left(\frac{12}{5}, \frac{54}{25},-\frac{22}{25}\right)$	A1	1.1b
		(3)	
(c)	$\begin{gathered} (4 \mathbf{i}+\mathbf{j}+2 \mathbf{k}) \cdot(2 \mathbf{i}-\mathbf{j}+3 \mathbf{k})=8-1+6=13 \\ 13=\sqrt{14} \sqrt{21} \cos \theta \Rightarrow \theta=\ldots \end{gathered}$	M1	1.1b
	$\theta=41^{\circ}$	A1	1.1b
		(2)	
(9 marks)			

Notes

Accept equivalent vector notation throughout.
(a)

M1: Starts by attempting to find a normal vector using a correct method. Allow if there are sign errors in attempts at the cross product.
A1: Obtains a correct normal vector
M1: Attempts scalar product between their normal and a point in the plane
A1: Correct Cartesian form (accept any equivalent Cartesian equation)
Alternative
M1: Uses the component form to eliminate one of the scalar parameters
A1: Two correct equations with one parameter eliminated OR a correct equation for each parameter in terms of x, y and z
M1: Forms a Cartesian equation
A1: Correct Cartesian equation (accept any equivalent form)
(b)

M1: Interprets the Cartesian form to give a parametric form (allow sign slips) and substitutes this into their Cartesian equation and proceeds to find a value for their parameter.
NB: Attempts at $\left(\begin{array}{r}2+\lambda-\mu \\ 4+2 \lambda+2 \mu \\ -1-3 \lambda+\mu\end{array}\right)=\left(\begin{array}{r}1+5 \lambda \\ 3-3 \lambda \\ -2+4 \lambda\end{array}\right)$ will score M0 as there are only two parameters, but $\left(\begin{array}{r}2+\lambda-\mu \\ 4+2 \lambda+2 \mu \\ -1-3 \lambda+\mu\end{array}\right)=\left(\begin{array}{r}1+5 \gamma \\ 3-3 \gamma \\ -2+4 \gamma\end{array}\right)$ leading to a value for γ from solving three equations in three
unknowns in M1.
dM1: Substitutes their parameter value back into the parametric form of the line. The parameter must have come from a correct attempt to find the value at intersection.
A1: Correct coordinates. Accept as $x=\ldots, y=, \ldots z=\ldots$ or as a vector.
Alternative:
M1: Eliminates two of the variables from the equation of plane using the Cartesian equation of the line and solves the linear equation.
dM1: Finds the other two coordinates.
A1: Correct coordinates, as above.
(c)

M1: Complete and correct scalar product method leading to a value for θ. Note that if $\sin \theta$ is used instead of $\cos \theta$ then they must also apply $90-\theta$ to access the method.
A1: Correct angle, accept awrt 41. as their final answer (do not isw if they go on to give e.g. $\left.(180-41)^{\circ}\right)$

