Question	Scheme	Marks	AOs
6(i)	When $n=1, \sum_{r=1}^{1}(3 r+1)(r+2)=4 \times 3=12$ $1(1+2)(1+3)=12$ (so the statement is true for $n=1$)	B1	2.2a
	Assume true for $n=k$ so $\sum_{r=1}^{k}(3 r+1)(r+2)=k(k+2)(k+3)$	M1	2.4
	$\sum_{r=1}^{k+1}(3 r+1)(r+2)=k(k+2)(k+3)+(3 k+4)(k+3)$	M1	2.1
	$=(k+3)\left(k^{2}+5 k+4\right)$	A1	1.1 b
	$\sum_{r=1}^{k+1}(3 r+1)(r+2)=(k+1)(k+3)(k+4)$	A1	1.1 b
	$\sum_{r=1}^{k+1}(3 r+1)(r+2)=(\underline{k+1})(\underline{k+1}+2)(\underline{k+1}+3)$ If the statement is true for $n=k$ then it has been shown true for $\underline{n=k+1}$ and as it is true for $n=1$, the statement is true for all (positive integers) n.	A1	2.4
		(6)	
(ii) Way 1	When $n=1,4^{1}+5^{1}+6^{1}=15$ so the statement is true for $n=1$	B1	2.2a
	Assume true for $n=k$ so $4^{k}+5^{k}+6^{k}$ is divisible by 15	M1	2.4
	$\mathrm{f}(k+2)=4^{k+2}+5^{k+2}+6^{k+2}$	M1	2.1
	$\begin{gathered} =16 \times 4^{k}+16 \times 5^{k}+16 \times 6^{k}+9 \times 5^{k}+20 \times 6^{k} \\ =16 \mathrm{f}(k)+45 \times 5^{k-1}+120 \times 6^{k-1} \end{gathered}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	E.g As 15 divides $\mathrm{f}(k), 45$ and 120 , so 15 divides $\mathrm{f}(k+1)$. If true for $n=k$ then true for $n=k+2$, true for $n=1$ so true for all positive odd integers n	A1	2.4
		(6)	
(ii) Way 2	When $n=1,4^{1}+5^{1}+6^{1}=15$ so the statement is true for $n=1$	B1	2.2a
	Assume true for $n=k$ so $4^{k}+5^{k}+6^{k}$ is divisible by 15	M1	2.4
	$\mathrm{f}(k+2)-\mathrm{f}(k)=4^{k+2}+5^{k+2}+6^{k+2}-4^{k}-5^{k}-6^{k}$	M1	2.1
	$\begin{aligned} & =15 \times 4^{k}+24 \times 5^{k}+35 \times 6^{k} \\ = & 15 \mathrm{f}(k)+45 \times 5^{k-1}+120 \times 6^{k-1} \end{aligned}$	A1	1.1b
	$\mathrm{f}(k+2)=16 \mathrm{f}(k)+45 \times 5^{k-1}+120 \times 6^{k-1}$	A1	1.1 b
	$\begin{aligned} & \text { E.g } \mathrm{f}(k+2)=16 \mathrm{f}(k)+15\left(3 \times 5^{k-1}+8 \times 6^{k-1}\right) \text { so } \\ & \text { if true for } n=k \text { then true for } n=k+2, \underline{\text { true for } n=1} \text { so true for all } \\ & \text { positive odd integers } n \end{aligned}$	A1	2.4
		(6)	

(ii) Way 3	When $n=1,4^{1}+5^{1}+6^{1}=15$ so the statement is true for $n=1$	B1	2.2a
	Assume true for $n=2 k+1$ so $\mathrm{f}(2 k+1)=4^{2 k+1}+5^{2 k+1}+6^{2 k+1}$ is divisible by 15	M1	2.4
	$\begin{gathered} \mathrm{f}(2 k+3)=4^{2 k+3}+5^{2 k+3}+6^{2 k+3} \text { or } \\ \mathrm{f}(2 k+3)-\mathrm{f}(2 k+1)=4^{2 k+3}+5^{2 k+3}+6^{2 k+3}-4^{2 k+1}-5^{2 k+1}-6^{2 k+1} \end{gathered}$	M1	2.1
	$\begin{aligned} \mathrm{f}(2 k+3) & =16 \times 4^{2 k+1}+25 \times 5^{2 k+1}+36 \times 6^{2 k+1} \\ & =16\left(4^{2 k+1}+5^{2 k+1}+6^{2 k+1}\right)+9 \times 5^{2 k+1}+20 \times 6^{2 k+1} \end{aligned}$ OR $\begin{aligned} \mathrm{f}(2 k+3)-\mathrm{f}(2 k+1) & =16 \times 4^{2 k+1}+25 \times 5^{2 k+1}+36 \times 6^{2 k+1}-4^{2 k+1}-5^{2 k+1}-6^{2 k+1} \\ & =15 \times 4^{2 k+1}+120 \times 5^{2 k}+210 \times 6^{2 k} \end{aligned}$	A1	1.16
	$\begin{gathered} \mathrm{f}(2 k+3)=16\left(4^{2 k+1}+5^{2 k+1}+6^{2 k+1}\right)+45 \times 5^{2 k}+120 \times 6^{2 k} \\ \text { OR } \\ \mathrm{f}(2 k+3)=\mathrm{f}(2 k+1)+15 \times 4^{2 k+1}+120 \times 5^{2 k}+210 \times 6^{2 k} \end{gathered}$	A1	1.16
	$\begin{aligned} & \mathrm{f}(2 k+3)=16\left(4^{2 k+1}+5^{2 k+1}+6^{2 k+1}\right)+15\left(3 \times 5^{2 k}+8 \times 6^{2 k}\right) \\ & \text { OR } \\ & \mathrm{f}(2 k+3)=\mathrm{f}(2 k+1)+15\left(4^{2 k+1}+8 \times 5^{2 k}+14 \times 6^{2 k}\right) \end{aligned}$ and If true for $n=2 k+1$ then true for $n=2 k+3$, true for $n=1$ so true for all positive odd integers n	A1	2.4
		(6)	

(12 marks)

Notes

(i)

B1: Shows the statement is true for $n=1$ by evaluating both sides. There is no need for statement "hence true for $n=1$ " for this mark but if they never state this the final A will be forfeited.
Look for a minimum of $4 \times 3=12$ for the LHS and $1 \times 3 \times 4$ for the RHS. If only one side is explicitly evaluated, it is B 0 , but all other marks may be gained.
M1: Makes an assumption statement that assumes the result is true for $n=k$
M1: Makes the inductive step by attempting to add the $(k+1)^{\text {th }}$ term to the assumed result.
Attempts at using the standard summation formulae score M0, as the question requires induction.
A1: Correct expression with at least one correct linear factor
A1: Obtains a fully correct factorised expression. May be as in scheme or in terms of $k+1$.
A1: Correct complete conclusion with all ideas conveyed at the end or as a narrative and the sum to $k+1$ expressed in terms of $k+1$ (or with the expression in term of $k+1$ stated earlier -it must be seen at some stage). Allow slips in notation if the intent is correct. Depends on all except the B mark, though an attempt at checking the $n=1$ case must have been made.
(ii) Way 1

B1: Shows that $\mathrm{f}(1)=15$
M1: Makes a statement that assumes the result is true for some value of n (Assume (true for)
$n=k$ is sufficient - note that this may be recovered in their conclusion if they say e.g. if true for $n=k$ then \ldots etc.)
M1: Attempts $\mathrm{f}(k+2)$

A1: Correctly obtains $16 \mathrm{f}(k)$ or $45 \times 5^{k-1}+120 \times 6^{k-1}$
A1: Reaches a correct expression for $\mathrm{f}(k+2)$ in terms of $\mathrm{f}(k)$
A1: Correct conclusion, including explanation that all terms on RHS are divisible by 15 , or writing terms each explicitly as multiples of 15 . This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution. Do not allow "true for all n " where n represents natural numbers, as this is incorrect.

Way 2

B1: Shows that $f(1)=15$
M1: Makes a statement that assumes the result is true for some value of n (Assume (true for) $n=k$ is sufficient - note that this may be recovered in their conclusion if they say e.g. if true for $n=k$ then... etc.)
M1: Attempts $\mathrm{f}(k+2)-\mathrm{f}(k)$ or equivalent work
A1: Achieves a correct expression for $\mathrm{f}(k+2)-\mathrm{f}(k)$ in terms of $\mathrm{f}(k)$
A1: Reaches a correct expression for $\mathrm{f}(k+2)$ in terms of $\mathrm{f}(k)$
A1: Correct conclusion, including explanation that all terms on RHS are divisible by 15 , or writing terms each explicitly as multiples of 15 . This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution. Do not allow "true for all n " where n represents natural numbers, as this is incorrect.

Way 3

B1: Shows that $f(1)=15$
M1: Makes a statement that assumes the result is true for some odd value of n (Assume (true for) $n=2 k+1$ is sufficient (or may use $2 k-1-$ note that this may be recovered in their conclusion if they say e.g. if true for $n=k$ then \ldots etc.)
M1: Attempts $\mathrm{f}(2 k+3)$ (like Way 1), or $\mathrm{f}(2 k+3)-\mathrm{f}(2 k+1)$ or equivalent work (like Way 2) It must be the correct $\mathrm{f}(2 k+1)$ used, in the latter case (subtracting $4^{k}+5^{k}+6^{k}$ instead of $4^{2 k+1}+5^{2 k+1}+6^{2 k+1}$ is M0)
A1: Reaches $16\left(4^{2 k+1}+5^{2 k+1}+6^{2 k+1}\right)+9 \times 5^{2 k+1}+20 \times 6^{2 k+1}$ or suitable equivalent OR achieves a correct expression for $\mathrm{f}(2 k+3)-\mathrm{f}(2 k+1)$ in terms of $\mathrm{f}(2 k+1)$ where factors of 15 are apparent. A1: Reaches $16\left(4^{2 k+1}+5^{2 k+1}+6^{2 k+1}\right)+45 \times 5^{2 k}+120 \times 6^{2 k}$ or a suitable equivalent OR a correct expression for $\mathrm{f}(2 k+3)$ of form $\operatorname{Af}(2 k+1)+15(\ldots)$ (though the $15(\ldots)$ could be separate multiples of 15 where the 15 need not yet be extracted).
A1: Correct conclusion, including explanation that all terms on RHS are divisible by 15 , or writing terms each explicitly as multiples of 15 . This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution. Do not allow "true for all n " where n represents natural numbers, as this is incorrect, but if n represents odd numbers than allow.
Note: $4^{2 k}=16^{k}$ etc may be used throughout.
Note: Way 3 should apply to cases where the question is rephrased in terms of $4^{2 n+1}+5^{2 n+1}+6^{2 n+1}$ for all n (rather than odd n).
Accept use of alternative equivalent language throughout.

