4. The plane Π_1 has equation

$$\mathbf{r} = 2\mathbf{i} + 4\mathbf{j} - \mathbf{k} + \lambda (\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}) + \mu(-\mathbf{i} + 2\mathbf{j} + \mathbf{k})$$

where λ and μ are scalar parameters.

(a) Find a Cartesian equation for Π_1

The line l has equation

$$\frac{x-1}{5} = \frac{y-3}{-3} = \frac{z+2}{4}$$

(b) Find the coordinates of the point of intersection of l with Π_1

The plane Π_2 has equation

$$\mathbf{r.}(2\mathbf{i}-\mathbf{j}+3\mathbf{k})=5$$

(c) Find, to the nearest degree, the acute angle between Π_1 and Π_2

(3)

(4)