4. The plane Π_{1} has equation

$$
\mathbf{r}=2 \mathbf{i}+4 \mathbf{j}-\mathbf{k}+\lambda(\mathbf{i}+2 \mathbf{j}-3 \mathbf{k})+\mu(-\mathbf{i}+2 \mathbf{j}+\mathbf{k})
$$

where λ and μ are scalar parameters.
(a) Find a Cartesian equation for Π_{1}

The line l has equation

$$
\frac{x-1}{5}=\frac{y-3}{-3}=\frac{z+2}{4}
$$

(b) Find the coordinates of the point of intersection of l with Π_{1}

The plane Π_{2} has equation

$$
\mathbf{r} .(2 \mathbf{i}-\mathbf{j}+3 \mathbf{k})=5
$$

(c) Find, to the nearest degree, the acute angle between Π_{1} and Π_{2}

