1(a)	$\operatorname{det} \mathbf{M}=-4 \times-4-4 \sqrt{3} \times-4 \sqrt{3}=\ldots \Rightarrow k=\sqrt{\operatorname{det} \mathbf{M}}=\ldots$	M1	3.1a
Way 1	$k=8$	A1	1.1b
	$\Rightarrow \mathbf{Q}=\left(\begin{array}{rr}-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right) \Rightarrow \cos \theta=-\frac{1}{2} \Rightarrow \theta=\ldots$	M1	1.1b
	$\left(\cos \theta<0, \sin \theta>0 \Rightarrow\right.$ Quadrant 2 so) $\theta=120^{\circ}$	A1	1.1b
		(4)	
Way 2	$\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)\left(\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right)=k\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)=\left(\begin{array}{cc}-4 & -4 \sqrt{3} \\ 4 \sqrt{3} & -4\end{array}\right)$	M1	3.1a
	Achieves both the equations $k \cos \theta=-4$ and $k \sin \theta=4 \sqrt{3}$	A1	1.1b
	$\frac{k \sin \theta}{k \cos \theta}=\frac{4 \sqrt{3}}{-4} \Rightarrow \tan \theta=-\sqrt{3} \Rightarrow \theta=\ldots$	M1	1.1b
	$\theta=120^{\circ}$ and $k=8$	A1	1.1b
		(4)	
(b)	Area of $S^{\prime}=$ area of $S \times k^{2} \quad$ (The area of the square $S=2 a^{2}$)	M1	1.1b
	Area of $S^{\prime}=128 a^{2}$	A1ft	2.2a
		(2)	

(6 marks)

Notes:

(a) Way 1

M1: A full method to find k such as attempting the square root of the determinant of \mathbf{M}. It is immediately deducible so the method may be implied by $k=8$.
A1: $k=8$
M1: A full method to find a value of θ using their k, no need to justify quadrant. Only one equation needed for this mark. Allow if a radians answer is given. May be implied by a correct angle.
A1: Correct angle in degrees.

Way 2

M1: Multiplies the correct matrix representing transformation Q by the matrix representing transformation P and sets equal to matrix \mathbf{M}. Allow for the matrices either way round as the transformations commute. No need to see the identity matrix, just multiplying through by k is sufficient.
A1: Both correct equations. Note that if a correct value of k is found, this A is scored under Way 1.
M1: Solves their simultaneous equations to find a value for θ (or k)
A1: $\theta=120^{\circ}$ and $k=8$
(b)

M1: Complete method to find the area of $S^{\prime}:$ 'their $k^{2 \prime} \times$ 'their $2 a^{2}$. Must be an attempt at the area of S but it need not be correct.
A1ft: Deduces the correct area for S^{\prime}, follow through their value of k

