Question	Scheme	Marks	AOs
2 (a)	$\begin{aligned} \cos ^{2} \frac{x}{3}= & \left(1-\frac{(x / 3)^{2}}{2}+\frac{(x / 3)^{4}}{24}-\ldots\right)^{2}=\ldots \quad \text { or }\left(1-\frac{x^{2}}{18}+\frac{x^{4}}{1944}-\ldots\right)^{2}=\ldots \quad \text { or } \\ & \frac{1}{2}\left(1 \pm \cos \frac{2 x}{3}\right)=\frac{1}{2}\left(1 \pm\left(1-\frac{1}{2}\left(\frac{2 x}{3}\right)^{2}+\frac{1}{4!}\left(\frac{2 x}{3}\right)^{4}-\right) \ldots\right) \end{aligned}$	M1	2.2a
	$=1-\frac{x^{2}}{9}+\frac{1}{243} x^{4}$	A1	1.1b
		(2)	
(b)	$\int \frac{1-\frac{x^{2}}{9}+\frac{1}{243} x^{4}}{x}=\int \frac{1}{x}-\frac{x}{9}+\frac{1}{243} x^{3}=A \ln x+B x^{2}+C x^{4}$ where A, B and $C \neq 0$	M1	3.1a
	$\ln x-\frac{x^{2}}{18}+\frac{1}{972} x^{4}$	A1ft	1.1b
	$=\operatorname{awrt} 0.98295$	A1	2.2a
		(3)	
(c)	Calculator $=$ awrt 0.98280	B1	1.1b
		(1)	
(d)	E.g. the approximation is correct to 3 d.p.	B1	3.2 b
		(1)	

(7 marks)

Notes:

(a)

M1: Deduces the required series by using the Maclaurin series for $\cos x$, replacing x with $\frac{x}{3}$ and squares, or first applying the double angle identity (allow sign error) and then applying the series for $\cos x$ with $\frac{2 x}{3}$. Attempts at finding from differentiation score M0 as the cosine series is required.
A1: Correct series
(b)

M1: Divides their series in part (a) by x and integrates to the form $A \ln x+B x^{2}+C x^{4}$
A1ft: Correct integration, follow through on their coefficients and need not be simplified.
A1: Deduces the definite integral awrt 0.98295
(c)

B1: Correct value.
(d)

B1: Makes a quantitative statement about the accuracy, so e.g. how many decimal places or significant figures it is correct to, or calculates a percentage accuracy to deduce it is reasonable. Do not accept just "underestimate" or similar without quantitative evidence. Allow for a reasonable comment as long as (b) is correct to at least 2 s.f. but (c) must be the correct value.

