Question	Scheme	Marks	AOs
2 (a)	$\cos^{2} \frac{x}{3} = \left(1 - \frac{\left(\frac{x}{3}\right)^{2}}{2} + \frac{\left(\frac{x}{3}\right)^{4}}{24} - \dots\right)^{2} = \dots \text{or} \left(1 - \frac{x^{2}}{18} + \frac{x^{4}}{1944} - \dots\right)^{2} = \dots \text{or}$ $\frac{1}{2} \left(1 \pm \cos \frac{2x}{3}\right) = \frac{1}{2} \left(1 \pm \left(1 - \frac{1}{2}\left(\frac{2x}{3}\right)^{2} + \frac{1}{4!}\left(\frac{2x}{3}\right)^{4} - \right)\dots\right)$	M1	2.2a
	$=1-\frac{x^2}{9}+\frac{1}{243}x^4$	A1	1.1b
		(2)	
(b)	$\int \frac{1 - \frac{x^2}{9} + \frac{1}{243}x^4}{x} = \int \frac{1}{x} - \frac{x}{9} + \frac{1}{243}x^3 = A\ln x + Bx^2 + Cx^4$ where A, B and $C \neq 0$	M1	3.1a
	$\ln x - \frac{x^2}{18} + \frac{1}{972} x^4$	A1ft	1.1b
	= awrt 0.98295	A1	2.2a
		(3)	
(c)	Calculator = awrt 0.98280	B1	1.1b
		(1)	
(d)	E.g. the approximation is correct to 3 d.p.	B1	3.2b
		(1)	
		(7 n	narks)
Notes:			
(a)			

M1: Deduces the required series by using the Maclaurin series for $\cos x$, replacing x with $\frac{x}{3}$ and squares, or first applying the double angle identity (allow sign error) and then applying the series for $\cos x$ with $\frac{2x}{3}$. Attempts at finding from differentiation score M0 as the cosine series is required.

A1: Correct series

(b)

M1: Divides their series in part (a) by x and integrates to the form $A \ln x + Bx^2 + Cx^4$

A1ft: Correct integration, follow through on their coefficients and need not be simplified.

A1: Deduces the definite integral awrt 0.98295

(c)

B1: Correct value.

(**d**)

B1: Makes a quantitative statement about the accuracy, so e.g. how many decimal places or significant figures it is correct to, or calculates a percentage accuracy to deduce it is reasonable. Do not accept just "underestimate" or similar without quantitative evidence. Allow for a reasonable comment as long as (b) is correct to at least 2 s.f. but (c) must be the correct value.