Question	Scheme	Marks	AOs
3	$w=4 x-1 \Rightarrow x=\frac{w+1}{4}$	B1	3.1a
	$\begin{gathered} a\left(\frac{w+1}{4}\right)^{3}+b\left(\frac{w+1}{4}\right)^{2}-19\left(\frac{w+1}{4}\right)-b(=0) \text { or } \\ (4 x-1)^{3}-9(4 x-1)^{2}-97(4 x-1)+c(=0) \end{gathered}$	M1	3.1a
	$\begin{gathered} a w^{3}+(3 a+4 b) w^{2}+(3 a+8 b-304) w+(a-60 b-304)=0 \\ \text { or } 64 x^{3}-192 x^{2}-304 x+87+c=0 \end{gathered}$	M1	1.1b
	Divides by a and equates the coefficients of w^{2} and w $\frac{3 a+4 b}{a}=-9 \quad \frac{3 a+8 b-304}{a}=-97$ and solves simultaneously to find a value for a or a value for b Note: $12 a+4 b=0$ and $100 a+8 b=304$ or Divides through by ' 16 ' leading to values of a and b $4 x^{3}-12 x^{2}-19 x+\frac{87+c}{19}=0$	M1	3.1a
	$c=\frac{a-60 b-304}{a}=\ldots$ or $\frac{87+c}{19}=12 \mathrm{P} \quad c=\ldots$	M1	1.1b
	$a=4 \quad b=-12 \quad c=105$	A1	1.1b
		(6)	

(6 marks)

Notes:

B1: Selects the method of making a connection between x and w by writing $w=4 x-1$ or $x=\frac{w+1}{4}$
M1: Applies the process of substituting their $x=\frac{w+1}{4}$ into $a x^{3}+b x^{2}-19 x-b=0$ or $w=4 x-1$ into $w^{3}-9 w^{2}-97 w+c=0$. Must be substitution of the correct variable into the opposing equation but may be scored if the initial linear equation is incorrect (e.g. $x=4 w-1$ into the first equation). Note that the " $=0$ " can be missing for this mark.
M1: Expands the brackets and collects terms in their equation (in x or w). Note that the " $=0$ " can be missing for this mark.
M1: A complete method for finding a value for a or b. See scheme, it involves dividing through by an appropriate factor for their equation to balance the w^{3} or $-19 x$ terms, then equating other coefficients and solving equations if necessary.
M1: A complete method for finding a value for c. They must have divided through by an appropriate factor as per the previous M before attempting to compare the constant coefficient (and use their a and b if appropriate).
A1: $a=4 \quad b=-12 \quad c=105$

Alternative	B1	3.1a
At least two of $\alpha+\beta+\gamma=-\frac{b}{a} \quad \alpha \beta+\alpha \gamma+\beta \gamma=-\frac{19}{a} \quad \alpha \beta \gamma=\frac{b}{a}$	M1	3.1a
New sum $=4(\alpha+\beta+\gamma)-3=9 \Rightarrow 4\left(-\frac{b}{a}\right)-3=9 \Rightarrow b=-3 a$	M1	1.1 b
New pair sum $=16(\alpha \beta+\alpha \gamma+\beta \gamma)-8(\alpha+\beta+\gamma)+3=-97$	M1	3.1 a
$\Rightarrow 16\left(-\frac{19}{a}\right)-8\left(-\frac{b}{a}\right)+3=-97$	M1	1.1 b
$\Rightarrow 16\left(-\frac{19}{a}\right)-8(3)+3=-97 \Rightarrow a=\ldots$	A1	1.1 b
New product $64(\alpha \beta \gamma)-16(\alpha \beta+\alpha \gamma+\beta \gamma)+4(\alpha+\beta+\gamma)-1=-c$		
$\Rightarrow 64\left(\frac{b}{a}\right)-16\left(-\frac{19}{a}\right)+4(3)-1=-c \Rightarrow c=\ldots$	(6)	
$a=4 \quad b=-12 \quad c=105$		

Alternative Notes

B1: Selects the method of giving at least two correct equations containing α, β and γ
M1: Applies the process of finding the new sum to generate an equation in a and b. Must be substituting in the correct places.
M1: Attempts the new pair sum to generate another equation connecting a and b. Must be substituting in the correct places.
M1: Solves their equations to find a value for a or b.
M1: Uses the new product with their values to find values for a, b and c
A1: $a=4 \quad b=-12 \quad c=105$

