Question	Scheme	Marks	AOs
4(i) (a) (b)	It is possible as the number of columns of matrix \mathbf{A} matches the number of rows of matrix \mathbf{B}.	B1	2.4
	It is not possible as matrix \mathbf{A} and matrix \mathbf{B} have different dimensions o.e. different number of columns	B1	2.4
		(2)	
(ii) (a)	$\lambda=5$	B1	2.2a
	$a=1, b=2$	B1	2.2a
(b)	Inverse matrix $=\frac{1}{5}\left(\begin{array}{rrr}0 & 5 & 0 \\ 2 & 12 & -1 \\ -1 & -11 & 3\end{array}\right)$	B1 ft	3.1a
		(3)	
(iii)	A complete method to find the determinant of the matrix and set equal to zero.	M1	1.1b
	Determinant $=1(\sin \theta \sin 2 \theta-\cos \theta \cos 2 \theta)-1(0)+1(0)=0$	A1	1.1b
	Uses compound angle formula to achieve $\cos 3 \theta=0$ leading to $\theta=\ldots$ or use of $\sin 2 q=2 \sin q \cos q$ and $\cos 2 q=1-2 \sin ^{2} q$ (e.g. to achieve $\left.\cos q\left(4 \sin ^{2} q-1\right)=0\right)$ leading to $\theta=\ldots$ or use of $\sin 2 q=2 \sin q \cos q$ and $\cos 2 q=2 \cos ^{2} q-1$ (e.g. to achieve $4 \cos ^{3} q-3 \cos q=0$) leading to $\theta=\ldots$	M1	3.1a
	$\theta=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}$	A1	1.1b
		(4)	

(9 marks)

Notes:

(i)(a)

B1: Comments that the number of columns of matrix $\mathbf{A}(2)$ equals the number of rows of matrix \mathbf{B} (2) therefore it is possible. Accept other terminology that is clear in intent e.g. "length of \mathbf{A} " and "height of B"
(b)

B1: Comments that matrix \mathbf{A} and matrix \mathbf{B} have different dimensions therefore it is not possible.
(ii)(a)

B1: Deduces the correct value for $\lambda=5$
B1: Deduces the correct values for a and b
(b)

B1ft: Identifies and applies a correct method find the inverse matrix. May multiply from the given equation, in which case follow through on their value of lambda. Alternatively, award for a correct matrix found by calculator or long hand having found a and b and using these values in the matrix.

M1: A complete method to find the determinant of the matrix and sets it equal to 0
A1: Correct equation
M1: Uses appropriate correct trig identities to solve the equation and finds a value for q
A1: All three correct values $\theta=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}$ and no others in the range.

