5(i)	$\int 2 \mathrm{e}^{-\frac{1}{2} x} \mathrm{~d} x=-4 \mathrm{e}^{-\frac{1}{2} x}$	B 1	1.1 b
	$\int_{1}^{\infty} 2 \mathrm{e}^{-\frac{1}{2} x} \mathrm{~d} x=\lim _{t \rightarrow \infty}\left[\left(-4 \mathrm{e}^{-\frac{1}{2} t}\right)-\left(-4 \mathrm{e}^{-\frac{1}{2}}\right)\right]$	M 1	2.1
	$=4 \mathrm{e}^{-\frac{1}{2}}$	A 1	1.1 b
(ii)(a)	Mean temperature $=\frac{1}{24} \int_{0}^{24}\left(8-5 \sin \left(\frac{\pi}{12} t\right)-\cos \left(\frac{\pi}{6} t\right)\right) \mathrm{d} t$	(3)	
	$=\frac{1}{24}\left[\left(8 t+\frac{60}{\pi} \cos \left(\frac{\pi}{12} t\right)-\frac{6}{\pi} \sin \left(\frac{\pi}{6} t\right)\right)_{0}^{24}=\frac{1}{24}[\cdots]\right.$	M 1	1.1 b
	$=\frac{1}{24}\left[\left(8(24)+\frac{60}{\pi}-\frac{6}{\pi} \times 0\right)-\left(\frac{60}{\pi}\right)\right]=8 * \operatorname{cso}$	$\mathrm{~A} 1 *$	2.1
(ii)(b)	E.g. increase the value of the constant $8 /$ adapt the constant 8 to a function which takes values greater than 8.	B 1	3.5 c
		(1)	

(7 marks)

Notes:

(i)

B1: Correct integration.
M1: Attempt to integrate to a form $\lambda \mathrm{e}^{-\frac{1}{2} x}$ where $\lambda \neq 2$, and applies correct limits with some consideration of the infinite limit given (e.g. with the limit statement). Only allow with ∞ used as the limit if subsequent work shows the term is zero.
A1: Correct value
(ii)(a)

B1: Recalls the correct formula for finding the mean value of a function. You may see the division by " 24 " only at the end. No integration is necessary, just a correct statement with an integral.
M1: Integrates to a form $\alpha t+\beta \cos \left(\frac{\pi}{12} t\right)+\delta \sin \left(\frac{\pi}{6} t\right)$ and uses the limits of 0 and 24 (the correct way around). If no explicit substitution is seen, accept any value following the integral as an attempt. Answers from a calculator with no correct integral seen score M0 as the question requires calculus to be used.
A1*cso: Achieves 8 with no errors seen following a full attempt at the substitution. Must have seen some evidence of the limits used, minimum required for substitution is $\left[\left(8(24)+\frac{60}{\pi}\right)-\left(\frac{60}{\pi}\right)\right]$.
(ii)(b)

B1: Accept any reasonable adaptation to the equation that will increase the mean value. E.g. as in scheme, or introduce another positive term, or decrease the constant 5 etc. It must be clear which constant they are referring to in their reason, not just "increase the constant".

