Question	Scheme	Marks	AOs
5(i)	$\int 2e^{-\frac{1}{2}x} \mathrm{d}x = -4e^{-\frac{1}{2}x}$	B1	1.1b
	$\int_{1}^{\infty} 2e^{-\frac{1}{2}x} dx = \lim_{t \to \infty} \left[\left(-4e^{-\frac{1}{2}t} \right) - \left(-4e^{-\frac{1}{2}} \right) \right]$	M1	2.1
	$=4e^{-\frac{1}{2}}$	A1	1.1b
		(3)	
(ii)(a)	Mean temperature = $\frac{1}{24} \int_{0}^{24} \left(8 - 5\sin\left(\frac{\pi}{12}t\right) - \cos\left(\frac{\pi}{6}t\right) \right) dt$	B1	1.2
	$= \frac{1}{24} \left[\left(8t + \frac{60}{\pi} \cos\left(\frac{\pi}{12}t\right) - \frac{6}{\pi} \sin\left(\frac{\pi}{6}t\right) \right) \right]_{0}^{24} = \frac{1}{24} []$	M1	1.1b
	$=\frac{1}{24}\left[\left(8\left(24\right)+\frac{60}{\pi}-\frac{6}{\pi}\times0\right)-\left(\frac{60}{\pi}\right)\right]=8 * \operatorname{cso}$	A1*	2.1
		(3)	
(ii)(b)	E.g. increase the value of the constant 8 / adapt the constant 8 to a function which takes values greater than 8.	B1	3.5c
		(1)	
(7 marks)			

Notes:

(i)

B1: Correct integration.

M1: Attempt to integrate to a form $\lambda e^{-\frac{1}{2}x}$ where $\lambda \neq 2$, and applies correct limits with some consideration of the infinite limit given (e.g. with the limit statement). Only allow with ∞ used as the limit if subsequent work shows the term is zero.

A1: Correct value

(ii)(a)

B1: Recalls the correct formula for finding the mean value of a function. You may see the division by "24" only at the end. No integration is necessary, just a correct statement with an integral.

M1: Integrates to a form $\alpha t + \beta \cos\left(\frac{\pi}{12}t\right) + \delta \sin\left(\frac{\pi}{6}t\right)$ and uses the limits of 0 and 24 (the correct

way around). If no explicit substitution is seen, accept any value following the integral as an attempt. Answers from a calculator with no correct integral seen score M0 as the question requires calculus to be used.

A1*cso: Achieves 8 with no errors seen following a full attempt at the substitution. Must have seen

some evidence of the limits used, minimum required for substitution is $\left| \left(8(24) + \frac{60}{\pi} \right) - \left(\frac{60}{\pi} \right) \right|$.

(ii)(b)

B1: Accept any reasonable adaptation to the equation that will increase the mean value. E.g. as in scheme, or introduce another positive term, or decrease the constant 5 etc. It must be clear which constant they are referring to in their reason, not just "increase the constant".