Question	Scheme	Marks	AOs
7(a)	$ \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} = -2 + 6 - 4 = 0 \text{ and } \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} = 4 + 0 - 4 = 0 $ $ \text{Alt:} \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \times 1 - 1 \times 0 \\ -(-1 \times 1 - 1 \times 2) \\ -1 \times 0 - 2 \times 2 \end{pmatrix} = \dots $	M1	1.1b
	As $2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$ is perpendicular to both direction vectors (two non- parallel vectors) of Π then it must be perpendicular to Π	A1	2.2a
		(2)	
(b)	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} \Longrightarrow \dots$	M1	1.1a
	2x + 3y - 4z = 7	A1	2.2a
		(2)	
(c)	$\frac{\left 2(4+t)+3(-5+6t)-4(2-3t)-7\right }{\sqrt{2^2+3^2+(-4)^2}} = 2\sqrt{29} \Longrightarrow t = \dots$	M1	3.1a
	$t = -\frac{9}{8}$ and $t = \frac{5}{2}$	A1	1.1b
	$\mathbf{r} = \begin{pmatrix} 4 \\ -5 \\ 2 \end{pmatrix} - \frac{9}{8} \begin{pmatrix} 1 \\ 6 \\ -3 \end{pmatrix} = \dots \text{ or } \mathbf{r} = \begin{pmatrix} 4 \\ -5 \\ 2 \end{pmatrix} + \frac{5}{2} \begin{pmatrix} 1 \\ 6 \\ -3 \end{pmatrix} = \dots$	M1	1.1b
	$\left(\frac{23}{8}, -\frac{47}{4}, \frac{43}{8}\right)$ and $\left(\frac{13}{2}, 10, -\frac{11}{2}\right)$	A1	2.2a
		(4)	
	(8 marks)		
Notes:			

(a)

M1: Attempts the scalar product of each direction vector and the vector $2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$. Some numerical calculation is required, just "= 0" is insufficient. Alternatively, attempts the cross product (allow sign slips) with the two direction vectors.

A1: Shows that both scalar products = 0 (minimum -2+6-4=0 and 4-4=0) and makes a minimal conclusion with no erroneous statements. If using cross product, the calculation must be correct, and a minimal conclusion given with no erroneous statements.

(b)

M1: Applies
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} \Rightarrow \dots$$

A1: $2x + 3y - 4z = 7$

(c)

M1: A fully correct method for finding a value of *t*. Other methods are possible, but must be valid and lead to a value of *t*. Examples of other methods:

•
$$2\sqrt{29} = \pm \left(\frac{2(4+t)+3(-5+6t)-4(2-3t)}{\sqrt{2^2+3^2+(-4)^2}} - \frac{7}{\sqrt{29}}\right)$$
 using plane parallel to Π through origin

and shortest distance from plane to origin.

•
$$2(4+t)+3(-5+6t)-4(2-3t)=7 \Rightarrow t = t_i$$
 (t at intersection of line and plane) and

 $\sin \theta = \frac{(2,3,-4)^T \cdot (1,6,-3)^T}{\sqrt{29}\sqrt{46}} \text{ (sine of angle between line and plane) followed by}$ $\sin \theta = \frac{2\sqrt{29}}{k\sqrt{46}} \Rightarrow k = ... \Rightarrow t = t_i \pm k$

A1: Correct values for *t*. Both are required.

M1: Uses a value of *t* to find a set of coordinates for *A*.

A1: Both correct sets of coordinates for *A*.