7(a)	$\begin{aligned} & \left(\begin{array}{r} -1 \\ 2 \\ 1 \end{array}\right) \cdot\left(\begin{array}{r} 2 \\ 3 \\ -4 \end{array}\right)=-2+6-4=0 \text { and }\left(\begin{array}{l} 2 \\ 0 \\ 1 \end{array}\right) \cdot\left(\begin{array}{r} 2 \\ 3 \\ -4 \end{array}\right)=4+0-4=0 \\ & \text { Alt: }\left(\begin{array}{r} -1 \\ 2 \\ 1 \end{array}\right) \times\left(\begin{array}{l} 2 \\ 0 \\ 1 \end{array}\right)=\left(\begin{array}{c} 2 \times 1-1 \times 0 \\ -(-1 \times 1-1 \times 2) \\ -1 \times 0-2 \times 2 \end{array}\right)=\ldots \end{aligned}$	M1	1.1b
	As $2 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}$ is perpendicular to both direction vectors (two nonparallel vectors) of Π then it must be perpendicular to Π	A1	2.2a
		(2)	
(b)	$\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \cdot\left(\begin{array}{r}2 \\ 3 \\ -4\end{array}\right)=\left(\begin{array}{l}3 \\ 3 \\ 2\end{array}\right) \cdot\left(\begin{array}{r}2 \\ 3 \\ -4\end{array}\right) \Rightarrow \ldots$	M1	1.1a
	$2 x+3 y-4 z=7$	A1	2.2a
		(2)	
(c)	$\frac{\|2(4+t)+3(-5+6 t)-4(2-3 t)-7\|}{\sqrt{2^{2}+3^{2}+(-4)^{2}}}=2 \sqrt{29} \Rightarrow t=\ldots$	M1	3.1a
	$t=-\frac{9}{8}$ and $t=\frac{5}{2}$	A1	1.1b
	$\boldsymbol{r}=\left(\begin{array}{r}4 \\ -5 \\ 2\end{array}\right)-\frac{9}{8}\left(\begin{array}{r}1 \\ 6 \\ -3\end{array}\right)=\ldots$ or $\boldsymbol{r}=\left(\begin{array}{r}4 \\ -5 \\ 2\end{array}\right)+\frac{5}{2}\left(\begin{array}{r}1 \\ 6 \\ -3\end{array}\right)=\ldots$	M1	1.1b
	$\left(\frac{23}{8},-\frac{47}{4}, \frac{43}{8}\right)$ and $\left(\frac{13}{2}, 10,-\frac{11}{2}\right)$	A1	2.2a
		(4)	

(8 marks)

Notes:

(a)

M1: Attempts the scalar product of each direction vector and the vector $2 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}$. Some numerical calculation is required, just " $=0$ " is insufficient. Alternatively, attempts the cross product (allow sign slips) with the two direction vectors.
A1: Shows that both scalar products $=0$ (minimum $-2+6-4=0$ and $4-4=0$) and makes a minimal conclusion with no erroneous statements. If using cross product, the calculation must be correct, and a minimal conclusion given with no erroneous statements.

(b)

M1: Applies $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \cdot\left(\begin{array}{r}2 \\ 3 \\ -4\end{array}\right)=\left(\begin{array}{l}3 \\ 3 \\ 2\end{array}\right) \cdot\left(\begin{array}{r}2 \\ 3 \\ -4\end{array}\right) \Rightarrow \ldots$
A1: $2 x+3 y-4 z=7$
(c)

M1: A fully correct method for finding a value of t. Other methods are possible, but must be valid and lead to a value of t. Examples of other methods:

- $2 \sqrt{29}= \pm\left(\frac{2(4+t)+3(-5+6 t)-4(2-3 t)}{\sqrt{2^{2}+3^{2}+(-4)^{2}}}-\frac{7}{\sqrt{29}}\right)$ using plane parallel to Π through origin and shortest distance from plane to origin.
- $2(4+t)+3(-5+6 t)-4(2-3 t)=7 \Rightarrow t=t_{i}(t$ at intersection of line and plane) and

$$
\begin{aligned}
& \sin \theta=\frac{(2,3,-4)^{T} \cdot(1,6,-3)^{T}}{\sqrt{29} \sqrt{46}}(\text { sine of angle between line and plane) followed by } \\
& \sin \theta=\frac{2 \sqrt{29}}{k \sqrt{46}} \Rightarrow k=\ldots \Rightarrow t=t_{i} \pm k
\end{aligned}
$$

A1: Correct values for t. Both are required.
M1: Uses a value of t to find a set of coordinates for A.
A1: Both correct sets of coordinates for A.

