8(a)	Volume of paint $=30$ litres therefore Rate of paint out $=3 \times \frac{r}{30}$ litres per second		M1	3.3
	$\frac{\mathrm{d} r}{\mathrm{~d} t}=2-\frac{r}{10}$		A1	1.1b
			(2)	
(b)	Rearranges $\frac{\mathrm{d} r}{\mathrm{~d} t}+\frac{r}{10}=2$ and attempts integrating factor $\mathrm{IF}=\mathrm{e}^{\int \frac{1}{10} \mathrm{~d} t}=\ldots$	Separates the variables $\begin{aligned} & \int \frac{1}{20-r} \mathrm{~d} r=\frac{1}{10} \mathrm{~d} t \\ & \Rightarrow \ldots \end{aligned}$	M1	3.1a
	$r \mathrm{e}^{\frac{t}{10}}=\int 2 \mathrm{e}^{\frac{t}{10}} \mathrm{~d} t \Rightarrow r \mathrm{e}^{\frac{t}{10}}=\lambda \mathrm{e}^{\frac{t}{10}}(+c)$	Integrates to the form $\lambda \ln (20-r)=\frac{1}{10} t(+c)$	M1	1.1b
	$r \mathrm{e}^{\frac{t}{10}}=20 \mathrm{e}^{\frac{t}{10}}+c$	$-\ln (20-r)=\frac{1}{10} t+c$	A1ft	1.1b
	$t=0, r=10 \Rightarrow c=\ldots$		M1	3.4
	$r=\frac{20 \mathrm{e}^{\frac{t}{10}}-10}{\mathrm{e}^{\frac{t}{10}}}=15 \text { rearranges to }$ achieve $\mathrm{e}^{\frac{t}{10}}=\alpha$ and solves to find a value for t or $r=20-10 \mathrm{e}^{-\frac{t}{10}}=15 \text { rearranges to }$ achieve $\mathrm{e}^{-\frac{t}{10}}=\beta$ and solves to find a value for t	$-\ln (20-15)=\frac{1}{10} t-\ln 10$ Leading to a value for t	M1	3.4
	$t=$ awrt 7 seconds		A1	2.2b
			(6)	
(c)	The model predicts 7 seconds but it actually takes 9 seconds so (over) 2 seconds out (over 20\%), therefore it is not a good model		B1ft	3.5a
			(1)	
(9 marks)				

Notes:

(a)

M1: Clearly identifies that Rate of paint out $=3 \times \frac{r}{\text { their volume }}$. It is a "show that" question so there must be clearly reasoning. Just answer with no reasoning scores M0.
A1: Puts all the components together to form the correct differential equation.

(b)

M1: Identifies as a first order differential equation and finds the integrating factor or separates the variables and integrates. Allow if there are sign slips in rearranging (e.g. to $\frac{\mathrm{d} r}{\mathrm{~d} t}-\frac{r}{10}=2$) or in the integrating factor and allow with their value for a or with a as an unknown.
M1: Multiplies through by the IF and attempts to integrate or integrates to the form
$\lambda \ln (2 a-r)=\frac{1}{a} t+c$ oe
A1ft: Correct integration, including constant of integration. Follow through on their value of a, but not sign slips from rearrangement. So allow for $r \mathrm{e}^{\frac{t}{a}}=2 a \mathrm{e}^{\frac{t}{a}}+c$ or $-\ln (2 a-r)=\frac{1}{a} t+c$ oe with a or their a.
M1: Uses the initial conditions to find the constant of integration. Must see substitution or can be implied by the correct value for their equation. Allow for finding in terms of a if separation of variables used.
M1: Sets $r=15$, achieves $\mathrm{e}^{\frac{t}{10}}=\alpha>0$ or $\mathrm{e}^{-\frac{t}{10}}=\beta>0$ as appropriate and solves to find a value for t. Separates the variable method sets $r=15$ and rearranges to find a value for t. Note: For this mark a value of a is needed, but need not be the correct one.
A1cso: $t=$ awrt 7 seconds from fully correct work.
(c)

B1ft: See scheme, follow through on their answer to part (b). Accept any reasonable comparative comment but must have a reason, not just a statement of good or not good. So e.g. look for finding the difference between their answer and 9 , or the percentage difference. If their answer is close to 9 , then accept a conclusion of being a good model if a suitable reason is given. May substitute 9 into their equation and obtain a value to compare with 15 and make a similar conclusion.

