Question	Scheme	Marks	AOs
9(a)	$\int \frac{x^2}{\sqrt{x^2 - 1}} dx \to \int f(u) du$ Uses the substitution $x = \cosh u$ fully to achieve an integral in terms of <i>u</i> only, including replacing the dx	M1	3.1a
	$\int \frac{\cosh^2 u}{\sqrt{\cosh^2 u - 1}} \sinh u \left(\mathrm{d} u \right)$	A1	1.1b
	Uses correct identities $\cosh^2 u - 1 = \sinh^2 u$ and $\cosh 2u = 2\cosh^2 u - 1$ to achieve an integral of the form $A \int (\cosh 2u \pm 1) du$ $A > 0$	M1	3.1a
	Integrates to achieve $A\left(\pm\frac{1}{2}\sinh 2u\pm u\right)(+c)$ $A > 0$	M1	1.1b
	Uses the identity $\sinh 2u = 2\sinh u \cosh u$ and $\cosh^2 u - 1 = \sinh^2 u$ $\rightarrow \sinh 2u = 2x\sqrt{x^2 - 1}$	M1	2.1
	$\frac{1}{2} \left[x \sqrt{x^2 - 1} + \operatorname{ar} \cosh x \right] + k * \operatorname{cso}$	A1*	1.1b
		(6)	
(b)	Uses integration by parts the correct way around to achieve $\int \frac{4}{15} x \operatorname{arcosh} x dx = Px^2 \operatorname{arcosh} x - Q \int \frac{x^2}{\sqrt{x^2 - 1}} dx$	M1	2.1
	$=\frac{4}{15}\left(\frac{1}{2}x^{2}\operatorname{arcosh}x - \frac{1}{2}\int\frac{x^{2}}{\sqrt{x^{2} - 1}}\mathrm{d}x\right)$	A1	1.1b
	$=\frac{4}{15}\left(\frac{1}{2}x^{2}\operatorname{arcosh}x-\frac{1}{2}\left(\frac{1}{2}\left[x\sqrt{x^{2}-1}+\operatorname{arcosh}x\right]\right)\right)$	B1ft	2.2a
	Uses the limits $x = 1$ and $x = 3$ the correct way around and subtracts = $\frac{4}{15} \left(\frac{1}{2} (3)^2 \operatorname{arcosh} 3 - \frac{1}{2} \left(\frac{1}{2} \left[3\sqrt{(3)^2 - 1} + \operatorname{arcosh} 3 \right] \right) \right) - \frac{4}{15} (0)$	dM1	1.1b
	$=\frac{4}{15}\left(\frac{9}{2}\ln\left(3+\sqrt{8}\right)-\frac{3\sqrt{8}}{4}-\frac{1}{4}\ln\left(3+\sqrt{8}\right)\right)$ $=\frac{1}{15}\left[17\ln\left(3+2\sqrt{2}\right)-6\sqrt{2}\right]*$	A1*	1.1b
		(5)	
(11 marks)			

Notes:

(a)

M1: Uses the substitution $x = \cosh u$ fully to achieve an integral in terms of u only. Must have replaced the dx but allow if the du is missing.

A1: Correct integral in terms of *u*. (Allow if the d*u* is missing.)

M1: Uses correct identities $\cosh^2 u - 1 = \sinh^2 u$ and $\cosh 2u = 2\cosh^2 u - 1$ to achieve an integrand of the required form

M1: Integrates to achieve the correct form, may be sign errors.

M1: Uses the identities $\sinh 2u = 2 \sinh u \cosh u$ and $\cosh^2 u - 1 = \sinh^2 u$ to attempt to find $\sinh 2u$ in terms of x. If using exponentials there must be a full and complete method to attempt the correct form.

A1*: Achieves the printed answer with no errors seen, cso

NB attempts at integration by parts are not likely to make progress – to do so would need to split the

integrand as $x \frac{x}{\sqrt{x^2 - 1}}$. If you see any attempts that you feel merit credit, use review.

(b)

M1: Uses integration by parts the correct way around to achieve the required form.

A1: Correct integration by parts

B1ft: Deduces the integral by using the result from part (a). Follow through on their 'uv'

dM1: Dependent on previous method mark. Uses the limits x = 1 and x = 3 the correct way around and subtracts

A1*cso: Achieves the printed answer with at least one intermediate step showing the evaluation of the arcosh 3, and no errors seen.