$$
\int \frac{x^{2}}{\sqrt{x^{2}-1}} \mathrm{~d} x \rightarrow \int \mathrm{f}(u) \mathrm{d} u
$$

Uses the substitution $x=\cosh u$ fully to achieve an integral in terms of u only, including replacing the $\mathrm{d} x$

$$
\int \frac{\cosh ^{2} u}{\sqrt{\cosh ^{2} u-1}} \sinh u(\mathrm{~d} u)
$$

Uses correct identities

$$
\cosh ^{2} u-1=\sinh ^{2} u \text { and } \cosh 2 u=2 \cosh ^{2} u-1
$$

to achieve an integral of the form

$$
A \int(\cosh 2 u \pm 1) \mathrm{d} u \quad A>0
$$

Integrates to achieve $A\left(\pm \frac{1}{2} \sinh 2 u \pm u\right)(+c) \quad A>0$
Uses the identity $\sinh 2 u=2 \sinh u \cosh u$ and $\cosh ^{2} u-1=\sinh ^{2} u$

$$
\rightarrow \sinh 2 u=2 x \sqrt{x^{2}-1}
$$

(b)

Uses integration by parts the correct way around to achieve
$\int \frac{4}{15} x \operatorname{arcosh} x \mathrm{~d} x=P x^{2} \operatorname{arcosh} x-Q \int \frac{x^{2}}{\sqrt{x^{2}-1}} \mathrm{~d} x$
$=\frac{4}{15}\left(\frac{1}{2} x^{2} \operatorname{arcosh} x-\frac{1}{2} \int \frac{x^{2}}{\sqrt{x^{2}-1}} \mathrm{~d} x\right)$
$=\frac{4}{15}\left(\frac{1}{2} x^{2} \operatorname{arcosh} x-\frac{1}{2}\left(\frac{1}{2}\left[x \sqrt{x^{2}-1}+\operatorname{arcosh} x\right]\right)\right)$
Uses the limits $x=1$ and $x=3$ the correct way around and subtracts

$$
\begin{array}{l|l|l}
=\frac{4}{15}\left(\frac{1}{2}(3)^{2} \operatorname{arcosh} 3-\frac{1}{2}\left(\frac{1}{2}\left[3 \sqrt{(3)^{2}-1}+\operatorname{arcosh} 3\right]\right)\right)-\frac{4}{15}(0) & \mathrm{dM} 1 & 1.1 \mathrm{~b} \\
=\frac{4}{15}\left(\frac{9}{2} \ln (3+\sqrt{8})-\frac{3 \sqrt{8}}{4}-\frac{1}{4} \ln (3+\sqrt{8})\right) & \mathrm{A} 1 * & 1.1 \mathrm{~b}
\end{array}
$$

$=\frac{1}{15}[17 \ln (3+2 \sqrt{2})-6 \sqrt{2}] *$

Notes:

(a)

M1: Uses the substitution $x=\cosh u$ fully to achieve an integral in terms of u only. Must have replaced the $\mathrm{d} x$ but allow if the $\mathrm{d} u$ is missing.
A1: Correct integral in terms of u. (Allow if the $\mathrm{d} u$ is missing.)
M1: Uses correct identities $\cosh ^{2} u-1=\sinh ^{2} u$ and $\cosh 2 u=2 \cosh ^{2} u-1$ to achieve an integrand of the required form
M1: Integrates to achieve the correct form, may be sign errors.
M1: Uses the identities $\sinh 2 u=2 \sinh u \cosh u$ and $\cosh ^{2} u-1=\sinh ^{2} u$ to attempt to find $\sinh 2 u$ in terms of x. If using exponentials there must be a full and complete method to attempt the correct form.

A1*: Achieves the printed answer with no errors seen, cso
NB attempts at integration by parts are not likely to make progress - to do so would need to split the integrand as $x \frac{x}{\sqrt{x^{2}-1}}$. If you see any attempts that you feel merit credit, use review.
(b)

M1: Uses integration by parts the correct way around to achieve the required form.
A1: Correct integration by parts
B1ft: Deduces the integral by using the result from part (a). Follow through on their ' $u v$ '
dM1: Dependent on previous method mark. Uses the limits $x=1$ and $x=3$ the correct way around and subtracts
A1*cso: Achieves the printed answer with at least one intermediate step showing the evaluation of the arcosh 3, and no errors seen.

