Question	Scheme	Marks	AOs
1(a)	$\mathrm{f}(x)=\mathrm{e}^{2 x} \cos x \Rightarrow \mathrm{f}^{\prime}(x)=2 \mathrm{e}^{2 x} \cos x-\mathrm{e}^{2 x} \sin x$	M1	1.1a
	$\mathrm{f}^{\prime \prime}(x)=4 \mathrm{e}^{2 x} \cos x-2 \mathrm{e}^{2 x} \sin x-\left(2 \mathrm{e}^{2 x} \sin x+\mathrm{e}^{2 x} \cos x\right)$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\begin{gathered} \mathrm{f}^{\prime \prime}(x)=3 \mathrm{e}^{2 x} \cos x-4 \mathrm{e}^{2 x} \sin x=p \mathrm{e}^{2 x} \cos x+q\left(2 \mathrm{e}^{2 x} \cos x-\mathrm{e}^{2 x} \sin x\right) \\ \Rightarrow p=\ldots, q=\ldots \end{gathered}$	M1	3.1a
	$\mathrm{f}^{\prime \prime}(x)=-5 \mathrm{f}(x)+4 \mathrm{f}^{\prime}(x)$	A1	2.1
		(5)	
(b)	$\mathrm{f}(0)=1, \mathrm{f}^{\prime}(0)=2, \mathrm{f}^{\prime \prime}(0)=3, \mathrm{f}^{\prime \prime \prime}(0)=2, \mathrm{f}^{\prime \prime \prime \prime}(0)=-7, \mathrm{f}^{v}(0)=-38$	M1	1.1b
	$\mathrm{f}(x)=\mathrm{f}(0)+x \mathrm{f}^{\prime}(0)+\frac{x^{2}}{2!} \mathrm{f}^{\prime \prime}(0)+\ldots$	M1	1.1b
	$\mathrm{f}(x) \approx 1+2 x+\frac{3 x^{2}}{2}+\frac{x^{3}}{3}-\frac{7 x^{4}}{24}-\frac{19 x^{5}}{60}$	A1	2.2a
		(3)	
(8 marks)			
Notes			
(a) M1: Realises the need to use the product rule and attempts the first derivative M1: Applies the product rule again to find the second derivative A1: Correct second derivative simplified or un-simplified M1: Uses their derivatives in order to obtain values for p and q A1: Completes the proof and obtains the correct values of p and q (b) M1: Attempts all 5 derivatives at $x=0$ using the result from part (a) M1: Uses the correct Maclaurin series including the factorials A1: Correct expression			

