Question	Scheme	Marks	AOs
2(a)	$\begin{gathered} z=\cos \theta+\mathrm{i} \sin \theta \Rightarrow \frac{1}{z}=\cos \theta-\mathrm{i} \sin \theta \\ \Rightarrow\left(z+\frac{1}{z}\right)^{5}=(2 \cos \theta)^{5}=32 \cos ^{5} \theta \end{gathered}$	M1	2.1
	$\left(z+\frac{1}{z}\right)^{5}=z^{5}+\frac{1}{z^{5}}+5\left(z^{3}+\frac{1}{z^{3}}\right)+10\left(z+\frac{1}{z}\right)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} 2.1 \\ 1.1 \mathrm{~b} \end{gathered}$
	$=2 \cos 5 \theta+10 \cos 3 \theta+20 \cos \theta$	M1	2.1
	$\cos ^{5} \theta=\frac{1}{16}(\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta) *$	A1*	1.1b
		(5)	
(b)	$\cos \theta-\cos 5 \theta=5 \cos 3 \theta \Rightarrow \cos \theta=5 \cos 3 \theta+\cos 5 \theta=16 \cos ^{5} \theta-10 \cos \theta$	M1	3.1a
	$16 \cos ^{5} \theta-11 \cos \theta=0$	A1	1.1b
	$\cos \theta\left(16 \cos ^{4} \theta-11\right)=0 \Rightarrow \cos \theta=0, \pm \sqrt[4]{\frac{11}{16}}$	M1	1.1b
	$\theta=3.57, \frac{3 \pi}{2}($ or 4.71$), 5.86$	$\begin{aligned} & \hline \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \hline 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(5)	
(10 marks)			
	Notes		

(a)

M1: Begins the proof by demonstrating that $\left(z+\frac{1}{z}\right)^{5}=32 \cos ^{5} \theta$
M1: Attempts to expand $\left(z+\frac{1}{z}\right)^{5}$ including the binomial coefficients
A1: Correct expansion
M1: Uses $z^{n}+\frac{1}{z^{n}}=2 \cos n \theta$ to obtain an expression in terms of $\cos 5 \theta, \cos 3 \theta$ and $\cos \theta$
$\mathrm{A} 1 *$: Concludes the argument by equating the two expressions leading to the printed answer with no errors
(b)

M1: Makes the connection with part (a) and reaches an equation in $\cos \theta$ only
A1: Correct equation
M1: Solves their equation for $\cos \theta$
A1: 2 correct solutions
A1: All 3 correct solutions. Ignore extra solutions outside the range but deduct this mark if there are extra answers in range.

