Question	Scheme	Marks	AOs
5(a)	$(t+4) \frac{\mathrm{d} v}{\mathrm{~d} t}+5 v=10(t+4) \Rightarrow \frac{\mathrm{d} v}{\mathrm{~d} t}+\frac{5 v}{(t+4)}=10$	M1	1.1b
	$\mathrm{IF}=\mathrm{e}^{\int \frac{5}{t+4} \mathrm{~d} t}=(t+4)^{5} \Rightarrow v(t+4)^{5}=\int 10(t+4)^{5} \mathrm{~d} t$	M1	3.1b
	$v(t+4)^{5}=\frac{5}{3}(t+4)^{6}+c$	A1	1.1b
	$t=0, v=0 \Rightarrow c=-\frac{20480}{3}$	M1	3.4
	$t=3 \Rightarrow v=\frac{5}{3} \times 7-\frac{20480}{3 \times 7^{5}}$	M1	3.4
	$v=11.3\left(\mathrm{~ms}^{-1}\right)$	A1	1.1b
		(6)	
(b)	For large values of t, the velocity increases	B1	1.1b
		(1)	
(c)	E.g. - The raindrop may hit an obstacle as it falls - The raindrop is unlikely to be at rest initially - The raindrop may be affected by the wind as it falls - The raindrop will eventually hit the ground	B1	3.5b
		(1)	
(8 marks)			

Notes

(a)

M1: Divides through by $(t+4)$
M1: Uses the model to find the integrating factor and attempts the solution of the differential equation
A1: Correct solution
M1: Interprets the initial conditions to find the constant of integration
M1: Uses their solution to the problem to find the velocity after 3 seconds
A1: Correct value
(b)

B1: Makes a sensible comment regarding the motion of the raindrop e.g. as t increases so does v
(c)

B1: States a limitation of the model - see scheme for examples

