Question	Scheme	Marks	AOs
5(a)	$\left(t+4\right)\frac{\mathrm{d}v}{\mathrm{d}t}+5v=10\left(t+4\right) \Longrightarrow \frac{\mathrm{d}v}{\mathrm{d}t}+\frac{5v}{\left(t+4\right)}=10$	M1	1.1b
	IF = $e^{\int \frac{5}{t+4} dt} = (t+4)^5 \Longrightarrow v(t+4)^5 = \int 10(t+4)^5 dt$	M1	3.1b
	$v(t+4)^5 = \frac{5}{3}(t+4)^6 + c$	A1	1.1b
	$t = 0, v = 0 \Longrightarrow c = -\frac{20480}{3}$	M1	3.4
	$t = 3 \Longrightarrow v = \frac{5}{3} \times 7 - \frac{20480}{3 \times 7^5}$ $v = 11.3 (\text{ ms}^{-1})$	M1	3.4
	$v = 11.3 (ms^{-1})$	A1	1.1b
		(6)	
(b)	For large values of <i>t</i> , the velocity increases	B1	1.1b
		(1)	
(c)	E.g.		
	• The raindrop may hit an obstacle as it falls		
	• The raindrop is unlikely to be at rest initially	B1	3.5b
	• The raindrop may be affected by the wind as it falls		
	• The raindrop will eventually hit the ground		
		(1)	
	(8 mar		

Notes

(a)

M1: Divides through by (t + 4)

M1: Uses the model to find the integrating factor and attempts the solution of the differential equation

A1: Correct solution

M1: Interprets the initial conditions to find the constant of integration

M1: Uses their solution to the problem to find the velocity after 3 seconds

A1: Correct value

(b)

B1: Makes a sensible comment regarding the motion of the raindrop e.g. as t increases so does v (c)

B1: States a limitation of the model – see scheme for examples