Question	Scheme	Marks	AOs
6	When $n=1,3^{n}-2^{n}=1$ When $n=2,3^{n}-2^{n}=9-4=5$ So the result is true for $n=1$ and $n=2$	B1	2.2a
	Assume true for $n=k$ and $n=k+1$ so $u_{k}=3^{k}-2^{k}$ and $u_{k+1}=3^{k+1}-2^{k+1}$	M1	2.4
	$u_{k+2}=5\left(3^{k+1}-2^{k+1}\right)-6\left(3^{k}-2^{k}\right)$	M1	1.1b
	$u_{k+2}=5 \times 3^{k+1}-5 \times 2^{k+1}-2 \times 3^{k+1}+3 \times 2^{k+1}$	A1	1.1b
	$\begin{gathered} =3 \times 3^{k+1}-2 \times 2^{k+1} \\ =3^{k+2}-2^{k+2} \end{gathered}$	A1	2.1
	If the statement is true for $n=k$ and $n=k+1$ then it has been shown true for $n=k+2$ and as it is true for $n=1$ and $n=2$, the statement is true for all positive integers n.	A1	2.4
		(6)	

(6 marks)

Notes

B1: Shows the statement is true for $n=1$ and $n=2$
M1: Makes a statement that assumes the result is true for $n=k$ and $n=k+1$
M1: Substitutes the assumption statements into the given result
A1: Correct expression that has been processed correctly to be in terms of 3^{k+1} and 2^{k+1}
A1: Obtains $3^{k+2}-2^{k+2}$ with no errors and all working shown
A1: Correct complete conclusion that may be part of a narrative throughout the proof

