Question	Scheme	Marks	AOs
7(a)	r = 8i + 2j + 10k + k(2i - 3j + 4k) or		
	(8i+2j+10k).(2i-3j+4k)=16-6+40	M1	1.1b
	$(8\mathbf{i}+2\mathbf{j}+10\mathbf{k}+k(2\mathbf{i}-3\mathbf{j}+4\mathbf{k})).(2\mathbf{i}-3\mathbf{j}+4\mathbf{k}) = -8 \Longrightarrow k = -2$		
	$\Rightarrow d = 2(2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}) = \sqrt{116} \text{ or } 2\sqrt{29}$	M1	3 10
	Or	A1	1.1b
	$d = \frac{(8\mathbf{i} + 2\mathbf{j} + 10\mathbf{k}) \cdot (2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}) + 8}{\sqrt{2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}}} = \frac{58}{\sqrt{2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}}}$		
	$\sqrt{2^2+3^2+4^2}$ $\sqrt{29}$		
		(3)	
(b)	$(4\mathbf{i} + \mathbf{j} - 7\mathbf{k}) \cdot (\mathbf{i} + 3\mathbf{j} + \mathbf{k}) = 4 + 3 - 7 = 0$ $(4\mathbf{i} + \mathbf{i} - 7\mathbf{k}) \cdot (2\mathbf{i} - \mathbf{i} + \mathbf{k}) = 8 - 1 - 7 = 0$	M1	1.1b
	$(\mathbf{H} + \mathbf{J} - \mathbf{K}) \cdot (\mathbf{2I} - \mathbf{J} + \mathbf{K}) = 0 = 1 - 7 = 0$		
	As $4\mathbf{I} + \mathbf{J} - 7\mathbf{K}$ is perpendicular to both direction vectors of Π_2 then it must be perpendicular to Π_2	A1	2.2a
		(2)	
(c)	$(4\mathbf{i} + \mathbf{j} - 7\mathbf{k}).(2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}) = 8 - 3 - 28 = -23$	M1	1.1b
	$\sqrt{4^2 + 1^2 + 7^2} \sqrt{2^2 + 3^2 + 4^2} \cos \theta = -23$	2.61	0.1
	$\Rightarrow \cos \theta = \frac{-23}{\sqrt{66}\sqrt{29}}$	MI	2.1
	$\theta = 58^{\circ}$	A1	1.1b
		(3)	
(d)	4x + y - 7z = 0 and $2x - 3y + 4z = -8$		
	$x = 0 \rightarrow \left(0, \frac{56}{17}, \frac{8}{17}\right), y = 0 \rightarrow \left(-\frac{28}{15}, 0, -\frac{16}{15}\right), z = 0 \rightarrow \left(-\frac{4}{7}, \frac{16}{7}, 0\right)$	M1	3.1a
	$\Rightarrow dir = 17\mathbf{i} + 30\mathbf{j} + 14\mathbf{k}$	A1	1.1b
	$r = \frac{56}{10}i + \frac{8}{10}k + \lambda(17i + 30i + 14k)$	M1	1.1b
	17 17	A1	2.5
		(4)	
Notes (12 marks)			
(a) M1: Starts by attempting to find an appropriate scalar product or finding the parametric equation			
of the perpendicular line			
M1: A complete strategy to establish the required distance			
(b)			
M1: Attempts both scalar products			
A1: Makes a correct deduction			
(C) M1: Calculates the scalar product between the normal vectors			
M1: Applies the scalar product formula with their – 23 to find a value for $\cos\theta$			

A1: Correct answer

(d)

