Question	Scheme	Marks	AOs
8(a)	$y=\frac{\mathrm{d} x}{\mathrm{~d} t}+5 x-51 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+5 \frac{\mathrm{~d} x}{\mathrm{~d} t}$	B1	2.1
	$\Rightarrow \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+5 \frac{\mathrm{~d} x}{\mathrm{~d} t}=12 x-6\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}+5 x-51\right)$	M1	2.1
	$\Rightarrow \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+11 \frac{\mathrm{~d} x}{\mathrm{~d} t}+18 x=306^{*}$	A1*	1.1 b
		(3)	
(b)	$m^{2}+11 m+18=0 \Rightarrow m=\ldots$	M1	3.4
	$m=-2,-9$	A1	1.1 b
	$x=A \mathrm{e}^{\alpha t}+B \mathrm{e}^{\beta t}$	M1	3.4
	$x=A \mathrm{e}^{-9 t}+B \mathrm{e}^{-2 t}$	A1	1.1b
	$\begin{aligned} \hline \text { PI: Try } \begin{aligned} x & =k \Rightarrow 18 k=306 \\ & \Rightarrow k=17 \end{aligned} \end{aligned}$	M1	3.4
	$G S: x=A \mathrm{e}^{-9 t}+B \mathrm{e}^{-2 t}+17$	A1ft	1.1b
		(6)	
(c)	$y=\frac{\mathrm{d} x}{\mathrm{~d} t}+5 x-51 \Rightarrow y=-9 A \mathrm{e}^{-9 t}-2 B \mathrm{e}^{-2 t}+5 A \mathrm{e}^{-9 t}+5 B \mathrm{e}^{-2 t}+85-51$	M1	3.4
	$y=3 B \mathrm{e}^{-2 t}-4 A \mathrm{e}^{-9 t}+34$	A1	1.1b
		(2)	
(d)	$\begin{gathered} 0=A+B+17,0=3 B-4 A+34 \Rightarrow A=\ldots, B=\ldots \\ \left(\mathrm{NB} A=-\frac{17}{7}, B=-\frac{102}{7}\right) \end{gathered}$	M1	3.3
	$x=17-\frac{17}{7} \mathrm{e}^{-9 t}-\frac{102}{7} \mathrm{e}^{-2 t}, y=34+\frac{68}{7} \mathrm{e}^{-9 t}-\frac{306}{7} \mathrm{e}^{-2 t}$	A1	1.1 b
	$\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} t} \Rightarrow \frac{153}{7} \mathrm{e}^{-9 t}+\frac{204}{7} \mathrm{e}^{-2 t}=-\frac{612}{7} \mathrm{e}^{-9 t}+\frac{612}{7} \mathrm{e}^{-2 t} \Rightarrow \mathrm{e}^{k}=\alpha$	M1	3.1b
	$\mathrm{e}^{7 t}=\frac{15}{8} \Rightarrow 7 t=\ln \left(\frac{15}{8}\right) \Rightarrow t=\frac{1}{7} \ln \left(\frac{15}{8}\right)$	M1	1.1 b
	$=5.39$ minutes	A1	3.2a
		(5)	
(e)	E.g. - The model suggests that, in the long term, the amount of antibiotic in the blood (and/or the body tissue) will remain constant and this is unlikely	B1	3.5a
		(1)	

(17 marks)

Notes

(a)

B1: Differentiates the first equation with respect to t correctly
M1: Proceeds to the printed answer by substituting into the second equation
A1*: Achieves the printed answer with no errors

M1: Uses the model to form and solve the Auxiliary Equation
A1: Correct roots of the AE
M1: Uses the model to form the Complementary Function
A1: Correct CF
M1: Chooses the correct form of the PI according to the model and uses a complete method to find the PI
A1ft: Combines their CF and PI to give x in terms of t
(c)

M1: Uses the model and their answer to part (b) to give y in terms of t
A1: Correct equation
(d)

M1: Realises the need to use the initial conditions to establish the values of their constants
A1: Correct particular solutions for x and y
M1: Differentiates both expressions, sets them equal and proceeds to reach an equation of the form
$\mathrm{e}^{k}=\alpha$
M1: Correct use of logarithms to reach $t=\ldots$
A1: Correct value
(e)

B1: Suggests a suitable evaluation of the model

