Question	Scheme	Marks	AOs
8(a)	$y = \frac{dx}{dt} + 5x - 51 \Longrightarrow \frac{dy}{dt} = \frac{d^2x}{dt^2} + 5\frac{dx}{dt}$	B1	2.1
	$\Rightarrow \frac{d^2 x}{dt^2} + 5\frac{dx}{dt} = 12x - 6\left(\frac{dx}{dt} + 5x - 51\right)$	M1	2.1
	$\Rightarrow \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 11\frac{\mathrm{d}x}{\mathrm{d}t} + 18x = 306 *$	A1*	1.1b
		(3)	
(b)	$m^2 + 11m + 18 = 0 \Longrightarrow m = \dots$	M1	3.4
	m = -2, -9	A1	1.1b
	$x = A e^{\alpha t} + B e^{\beta t}$	M1	3.4
	$x = Ae^{-9t} + Be^{-2t}$	A1	1.1b
	PI: Try $x = k \Longrightarrow 18k = 306$ $\Rightarrow k = 17$	M1	3.4
	$GS: x = Ae^{-9t} + Be^{-2t} + 17$	A1ft	1.1b
		(6)	
(c)	$y = \frac{dx}{dt} + 5x - 51 \Longrightarrow y = -9Ae^{-9t} - 2Be^{-2t} + 5Ae^{-9t} + 5Be^{-2t} + 85 - 51$	M1	3.4
	$y = 3Be^{-2t} - 4Ae^{-9t} + 34$	A1	1.1b
		(2)	
(d)	$0 = A + B + 17, \ 0 = 3B - 4A + 34 \Longrightarrow A =, B =$ 17 102	M1	3.3
	$(NB \ A = -\frac{7}{7}, B = -\frac{7}{7})$		
	$x = 17 - \frac{17}{7}e^{-9t} - \frac{102}{7}e^{-2t}, y = 34 + \frac{68}{7}e^{-9t} - \frac{306}{7}e^{-2t}$	A1	1.1b
	$\frac{dx}{dt} = \frac{dy}{dt} \Longrightarrow \frac{153}{7} e^{-9t} + \frac{204}{7} e^{-2t} = -\frac{612}{7} e^{-9t} + \frac{612}{7} e^{-2t} \Longrightarrow e^{k} = \alpha$	M1	3.1b
	$e^{7t} = \frac{15}{8} \Longrightarrow 7t = \ln\left(\frac{15}{8}\right) \Longrightarrow t = \frac{1}{7}\ln\left(\frac{15}{8}\right)$	M1	1.1b
	= 5.39 minutes	A1	3.2a
		(5)	
(e)	 E.g. The model suggests that, in the long term, the amount of antibiotic in the blood (and/or the body tissue) will remain constant and this is unlikely 	B1	3.5a
		(1)	
(17 marks)			
Notes			
(a)			
B1: Differentiates the first equation with respect to t correctly			
M1: Proceeds to the printed answer by substituting into the second equation			
A1*: Achieves the printed answer with no errors			

(b)

M1: Uses the model to form and solve the Auxiliary Equation

A1: Correct roots of the AE

M1: Uses the model to form the Complementary Function

A1: Correct CF

M1: Chooses the correct form of the PI according to the model and uses a complete method to find the PI

A1ft: Combines their CF and PI to give x in terms of t

(c)

M1: Uses the model and their answer to part (b) to give y in terms of t

A1: Correct equation

(d)

M1: Realises the need to use the initial conditions to establish the values of their constants

A1: Correct particular solutions for x and y

M1: Differentiates both expressions, sets them equal and proceeds to reach an equation of the form $e^k = \alpha$

M1: Correct use of logarithms to reach $t = \dots$

A1: Correct value

(e)

B1: Suggests a suitable evaluation of the model