8. A doctor is studying the concentration of an antibiotic in the blood and the body tissue of a patient.
Let x be the number of micrograms of the antibiotic in the blood.
Let y be the number of micrograms of the antibiotic in the body tissue.
The doctor models her results by the differential equations

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=-5 x+y+51 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} t}=12 x-6 y
\end{aligned}
$$

where t is the time in hours after a dose of the antibiotic has been administered to the patient.
(a) Show that

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+11 \frac{\mathrm{~d} x}{\mathrm{~d} t}+18 x=306 \tag{3}
\end{equation*}
$$

(b) Find a general solution for the number of micrograms of the antibiotic in the blood at time t hours.
(c) Hence find a general solution for the number of micrograms of the antibiotic in the body tissue at time t hours.

Initially there is none of this antibiotic in the blood and none of this antibiotic in the body tissue.
(d) Find, in minutes, to 2 decimal places, the time when the rate of increase of the antibiotic in the blood is equal to the rate of increase of the antibiotic in the body tissue.
(e) Evaluate the model.

