3(a)

$\frac{d y}{d x}+y \tan x=e^{2 x} \cos x$		
$\mathrm{IF}=e^{\int \tan x d x}=e^{\ln \sec x}=\sec x \Rightarrow \sec x \frac{d y}{d x}+y \sec x \tan x$		
$=e^{2 x}$	M1	3.1 a
$\Rightarrow y \sec x=\int e^{2 x} d x$	A 1	1.1 b
$y \sec x=\frac{1}{2} e^{2 x}(+c)$	A 1	1.1 b
$y=\left(\frac{1}{2} e^{2 x}+c\right) \cos x$	(3)	
$x=0, y=3 \Rightarrow c=\ldots\{2.5\}$	M 1	3.1 a
$x=\left(\frac{1}{2} e^{2 x}+\frac{5}{2}\right) \cos x=0 \Rightarrow \cos x=0 \Rightarrow x=\ldots$	M 1	1.1 b
$x=\frac{\pi}{2}$	A1	1.1 b
	(3)	

(6 marks)

Notes:

(a)

M1: Finds the integrating factor and attempts the solution of the differential equation.
Look for I.F. $=e^{\int \tan x d x} \Rightarrow y \times$ 'their I.F.' $=\int e^{2 x} \cos x \times$ 'their I.F.' $d x$
A1: Correct solution condone missing $+c$
A1: Correct general solution, Accept equivalents of the form $y=\mathrm{f}(x)$, such as $y=\frac{e^{2 x}}{2 \sec x}+\frac{c}{\sec x}$
(b)

M1: Uses $x=0 \quad y=3$ to find the constant of integration. Allow if done as part of part (a) and allow for their answer to (a) as long as it has a constant of integration to find.
M1: Sets $y=0$ in an equation of the form $y=\left(A e^{2 x}+c\right) \cos x$ (oe) where A is 1,2 or $\frac{1}{2}$, with their c or constant c and makes a valid attempt to solve the equation to find a value for x. (Allow even if the constant of integration has not been found).
A1: Depends on both M's. Awrt 1.57 or $\frac{\pi}{2}$ only. There must have been an attempt to find the constant of integration, but allow from a correct answer to (a) as long as a positive value for c has been found (can be scored from implicit form).

