Question	Scheme	Marks	AOs
6(a)	$\frac{2x^2 + 3x + 6}{(x+1)(x^2 + 4)} = \frac{A}{x+1} + \frac{Bx + C}{x^2 + 4} \Rightarrow 2x^2 + 3x + 6$ $= A(x^2 + 4) + (Bx + C)(x+1)$	M1	1.1b
	e.g. $x = -1 \Rightarrow A =, x = 0 \Rightarrow C =, \text{ coeff } x^2 \Rightarrow B =$ or Compares coefficients and solves to find values for A, B and C 2 = A + B, 3 = B + C, 6 = 4A + C	dM1	1.1b
	A = 1, B = 1, C = 2	A1	1.1b
		(3)	
(b)	$\int_{0}^{2} \frac{1}{x+1} + \frac{x+2}{x^{2}+4} \mathrm{d}x = \int_{0}^{2} \frac{1}{x+1} + \frac{x}{x^{2}+4} + \frac{2}{x^{2}+4} \mathrm{d}x$ $= \left[\alpha \ln(x+1) + \beta \ln(x^{2}+4) + \lambda \arctan\left(\frac{x}{2}\right) \right]_{0}^{2}$	M1	3.1a
	$= \left[ln(x+1) + \frac{1}{2}ln(x^{2}+4) + arctan\left(\frac{x}{2}\right) \right]_{0}^{2}$	A1	2.1
	$= \left[ln(3) + \frac{1}{2}ln(8) + \arctan 1 \right] - \left[ln(1) + \frac{1}{2}ln(4) + \arctan(0) \right]$ = $= \left[ln(3) + \frac{1}{2}ln(8) + \arctan(1) \right] - \left[\frac{1}{2}ln 4 \right] = \frac{ln\left(\frac{3\sqrt{8}}{2} \right)}{4} + \frac{\pi}{4}$	dM1	2.1
	$ln(3\sqrt{2}) + \frac{\pi}{4}$	A1	2.2a
		(4)	
(7 marks)			

Notes:

(a)

M1: Selects the correct form for partial fractions and multiplies through to form suitable identity or uses a method to find at least one value (e.g. cover up rule).

dM1: Full method for finding values for all three constants. Dependent on first M. Allow slips as long as the intention is clear.

A1: Correct constants or partial fractions.

(b)

M1: Splits the integral into an integrable form and integrates at least two terms to the correct form. They may use a substitution on the arctan term

A1: Fully correct Integration.

dM1: Uses the limits of 0 and 2 (or appropriate for a substitution), subtracts the correct way round and combines the ln terms from separate integrals to a single term with evidence of correct ln laws at least once.

A1: Correct answer