6(a)

$$
\begin{aligned}
& \qquad \begin{array}{r}
\frac{2 x^{2}+3 x+6}{(x+1)\left(x^{2}+4\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+4} \Rightarrow 2 x^{2}+3 x+6 \\
\\
=A\left(x^{2}+4\right)+(B x+C)(x+1)
\end{array} \\
& \text { e.g. } x=-1 \Rightarrow A=\ldots, x=0 \Rightarrow C=\ldots, \text { coeff } x^{2} \Rightarrow B=\ldots
\end{aligned}
$$

or
Compares coefficients and solves to find values for A, B and C

$$
\begin{gathered}
2=A+B, 3=B+C, \quad 6=4 A+C \\
A=1, \quad B=1, \quad C=2
\end{gathered}
$$

A1 1.1b
(b)

$\int_{0}^{2} \frac{1}{x+1}+\frac{x+2}{x^{2}+4} \mathrm{~d} x=\int_{0}^{2} \frac{1}{x+1}+\frac{x}{x^{2}+4}+\frac{2}{x^{2}+4} \mathrm{~d} x$	M 1	3.1 a
$=\left[\alpha \ln (x+1)+\beta \ln \left(x^{2}+4\right)+\lambda \arctan \left(\frac{x}{2}\right)\right]_{0}^{2}$	A 1	2.1
$=\left[\ln (x+1)+\frac{1}{2} \ln \left(x^{2}+4\right)+\arctan \left(\frac{x}{2}\right)\right]_{0}^{2}$	dM 1	2.1
$=\left[\ln (3)+\frac{1}{2} \ln (8)+\arctan 1\right]-\left[\ln (1)+\frac{1}{2} \ln (4)+\arctan (0)\right]$		
$=\left[\ln (3)+\frac{1}{2} \ln (8)+\arctan (1)\right]-\left[\frac{1}{2} \ln 4\right]=\ln \left(\frac{3 \sqrt{8}}{2}\right)+\frac{\pi}{4}$	A1	2.2 a
$\ln (3 \sqrt{2})+\frac{\pi}{4}$	(4)	

(7 marks)

Notes:

(a)

M1: Selects the correct form for partial fractions and multiplies through to form suitable identity or uses a method to find at least one value (e.g. cover up rule).
dM1: Full method for finding values for all three constants. Dependent on first M. Allow slips as long as the intention is clear.
A1: Correct constants or partial fractions.
(b)

M1: Splits the integral into an integrable form and integrates at least two terms to the correct form.
They may use a substitution on the arctan term
A1: Fully correct Integration.
dM1: Uses the limits of 0 and 2 (or appropriate for a substitution), subtracts the correct way round and combines the \ln terms from separate integrals to a single term with evidence of correct \ln laws at least once.
A1: Correct answer

