Question	Scheme	Marks	AOs
9(i) (a)	 E. g. Because the interval being integrated over is unbounded. cosh x is undefined at the limit of ∞ the upper limit is infinite 	B1	1.2
		(1)	
(i) (b)	$\int_0^\infty \cosh x \mathrm{d}x = \lim_{t \to \infty} \int_0^t \cosh x \mathrm{d}x \text{ or } \lim_{t \to \infty} \int_0^t \frac{1}{2} (e^x + e^{-x}) \mathrm{d}x$	B1	2.5
	$\int_{0}^{t} \cosh x dx = [\sinh x]_{0}^{t} = \sinh t (-0) \text{or}$ $\frac{1}{2} \int_{0}^{t} e^{x} + e^{-x} dx = \frac{1}{2} [e^{x} - e^{-x}]_{0}^{t} = \frac{1}{2} [e^{t} - e^{-t}] \left(-\frac{1}{2} [e^{0} - e^{0}] \right)$	M1	1.1b
	When $t \to \infty e^t \to \infty$ and $e^{-t} \to 0$ therefore the integral is divergent	A1	2.4
		(3)	
(ii)	$4 \sinh x = p \cosh x \Rightarrow \tanh x = \frac{p}{4} \text{ or } 4 \tanh x = p$ Alternative $\frac{4}{2}(e^{x} - e^{-x}) = \frac{p}{2}(e^{x} + e^{-x}) \Rightarrow 4e^{x} - 4e^{-x} = pe^{x} + pe^{-x}$ $e^{2x}(4 - p) = p + 4 \Rightarrow e^{2x} = \frac{p + 4}{4 - p}$	M1	3.1a
	$\left\{-1 < \frac{p}{4} < 1 \Rightarrow \right\} - 4 < p < 4$	A1	2.2a
		(2)	
	(6 marks)		

(i)(a)

B1: For a suitable explanation. Technically this should refer to the interval being unbounded, but this is unlikely to be seen. Accept "Because the upper limit is infinity", but **not** "because it is infinity" without reference to what "it" is. Do not accept "the upper limit tends to infinity" or "the integral is unbounded".

(i)(b)

B1: Writes the integral in terms of a limit as $t \to \infty$ (or other variable) with limits 0 and "t", or implies the integral is a limit by subsequent working by correct language.

M1: Integrates coshx correctly either as sinh x or in terms of exponentials and applies correctly the limits of 0 and "t". The bottom limit zero may be implied. No need for the $\lim_{t\to\infty}$ for this mark but substitution of ∞ is M0.

A1: cso States that (as $t \to \infty$) sinh $t \to \infty$ or $e^t \to \infty$ and $e^{-t} \to 0$ therefore divergent (or not convergent), or equivalent working. Accept sinh t is undefined as $t \to \infty$

(ii)

M1: Divides through by $\cosh x$ to find an expression involving $\tanh x$

Alternative: uses the correct exponential definitions and finds an expression for e^{2x} or solves a quadratic in e^{2x}

A1: Deduces the correct inequality for p. Note |p| < 4 is a correct inequality for p.