Question	Scheme	Marks	AOs
1	$\{w=x+2 \Rightarrow\} x=w-2$	B1	3.1a
	$(w-2)^{3}-7(w-2)^{2}-12(w-2)+6(=0)$	M1	1.1b
	$\begin{gathered} \left(w^{3}-6 w^{2}+12 w-8\right)-7\left(w^{2}-4 w+4\right)-12(w-2)+6 \\ w^{3}-6 w^{2}+12 w-8-7 w^{2}+28 w-28-12 w+24+6 \\ =w^{3}+\ldots w^{2}+\ldots w+\ldots \end{gathered}$	M1	3.1a
	$w^{3}-13 w^{2}+28 w-6=0$	$\begin{aligned} & \mathbf{A 1} \\ & \mathbf{A 1} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(5)	
	Alternative using sum, pair sum and product of roots:		
	$\alpha+\beta+\gamma=7, \alpha \beta+\beta \gamma+\alpha \gamma=-12, \alpha \beta \gamma=-6$	B1	3.1a
	New sum: $\alpha+2+\beta+2+\gamma+2=(\alpha+\beta+\gamma)+6=7+6=13$	M1	3.1a
	$\begin{gathered} \text { New pair sum: } \quad(\alpha+2)(\beta+2)+(\alpha+2)(\gamma+2)+(\beta+2)(\gamma+2) \\ =(\alpha \beta+\alpha \gamma+\beta \gamma)+4(\alpha+\beta+\gamma)+12=-12+4 \times 7+12=28 \end{gathered}$		
	$\begin{gathered} \text { New product: }(\alpha+2)(\beta+2)(\gamma+2) \\ =\alpha \beta \gamma+2(\alpha \beta+\alpha \gamma+\beta \gamma)+4(\alpha+\beta+\gamma)+8 \\ =-6+2 \times-12+4 \times 7+8=6 \end{gathered}$		
	$p=-$ "13", $q=28, r=-46$ or $w^{3}-$ " $13 " w^{2}+$ "28" $w-$ "6" ($=0$)	M1	1.1b
	$w^{3}-13 w^{2}+28 w-6=0$	$\begin{aligned} & \hline \mathbf{A 1} \\ & \mathbf{A 1} \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
			arks)

Notes:

Allow a variable other than w to be used for the first 4 marks.
 The " $=0$ " is not required until the final mark.

B1: Selects the method of making a connection between x and w by writing $x=w-2$
M1: Applies the process of substituting their $x=" w-2 "$ into the equation for all occurrences of x.
M1: Depends on having attempted substituting either $x=w-2$ or $x=w+2$ into the equation. This mark is for manipulating their resulting equation into the required form so must have gathered terms. Condone poor squaring/cubing of brackets as long as a cubic expression is obtained.
A1: At least two of p, q and r correct.
A1: Correct final equation (including " $=0$ "). Must be an equation in w.
Note if they say e.g. $x=w-2$ and then substitute $w+2$, it is possible to score B1 M0 M1
Note if they say e.g. $x=w+2$ and then substitute $w-2$, allow recovery
Alternative:
B1: Selects the method of giving three correct equations for the sum, pair sum and product in terms of α, β and γ. Note that the correct values may be seen embedded when they attempt the new sum, pair sum and product e.g. $(\alpha+2)(\beta+2)(\gamma+2)=\alpha \beta \gamma+2(\alpha \beta+\alpha \gamma+\beta \gamma)+4(\alpha+\beta+\gamma)+8$

$$
=\underline{-6}+2(\underline{\mathbf{- 1 2}})+4(\underline{\mathbf{7}})+8
$$

M1: Applies the process of finding the new sum, pair sum and product. Mark positively here and allow slips provided they are attempting $\alpha+2+\beta+2+\gamma+2,(\alpha+2)(\beta+2)+(\alpha+2)(\gamma+2)+(\beta+2)(\gamma+2)$ and $(\alpha+2)(\beta+2)(\gamma+2)$
M1: In this method, this mark is for choosing $p=-$ (their new sum), $q=$ their new pair sum,
$r=-($ their new product $)$ or forming $w^{2}-($ new sum $) w^{2}+($ new pair sum $) w-($ new product $)$
A1: At least two of p, q and r correct. As values or seen in their equation.
A1: Correct final equation (including " $=0$ "). Must be an equation in w.
In all methods, the final A mark depends on all the previous marks.

