Question	Scheme	Marks	AOs
3(a)	e.g. $\left\|z_{1}\right\|=\sqrt{(-4)^{2}+4^{2}}$ or $\arg z_{1}=\pi-\frac{\pi}{4}$ oe	M1	1.16
	$\left(z_{1}=\right) 4 \sqrt{2}\left(\cos \frac{3 \pi}{4}+\mathrm{i} \sin \frac{3 \pi}{4}\right)$ or e.g. $\left(z_{1}=\right) \sqrt{32}\left(\cos \frac{3 \pi}{4}+\mathrm{i} \sin \frac{3 \pi}{4}\right)$	A1	1.1b
		(2)	
(b)(i)	$\begin{gathered} \frac{z_{1}}{z_{2}}=\frac{" 4 \sqrt{2} "}{3}\left(\cos \left(" \frac{3 \pi}{4} "-\frac{17 \pi}{12}\right)+\mathrm{i} \sin \left(" \frac{3 \pi}{4} "-\frac{17 \pi}{12}\right)\right)=\ldots \\ \frac{z_{1}}{z_{2}}=\frac{" 4 \sqrt{2} " \mathrm{e}^{\frac{-3 \pi}{4} \mathrm{i} "}}{3 \mathrm{e}^{\frac{17 \pi}{12} \mathrm{i}}}=\frac{" 4 \sqrt{2} "}{3} \mathrm{e}^{\left(-\frac{3 \pi}{4} "-\frac{17 \pi}{12}\right) \mathrm{i}} \\ \text { or } \\ \frac{z_{1}}{z_{2}}=\frac{-4+4 \mathrm{i}}{3\left(\left(\frac{\sqrt{2}-\sqrt{6}}{4}\right)-\mathrm{i}\left(\frac{\sqrt{2}+\sqrt{6}}{4}\right)\right)} \times \frac{\left(\frac{\sqrt{2}-\sqrt{6}}{4}\right)+\mathrm{i}\left(\frac{\sqrt{2}+\sqrt{6}}{4}\right)}{\left(\frac{\sqrt{2}-\sqrt{6}}{4}\right)+\mathrm{i}\left(\frac{\sqrt{2}+\sqrt{6}}{4}\right)}=\ldots \end{gathered}$	M1	3.1a
	$=-\frac{2 \sqrt{2}}{3}-\frac{2 \sqrt{6}}{3} \mathrm{i}$ or $-\frac{2 \sqrt{2}}{3}-\mathrm{i} \frac{2 \sqrt{6}}{3}$ or $-\frac{2 \sqrt{2}}{3}+\mathrm{i}\left(-\frac{2 \sqrt{6}}{3}\right)$	A1	1.1b
		(2)	

Notes

(a) Correct answer with no working scores both marks in (a)

M1: Any correct expression for $\left|z_{1}\right|$ or $\arg z_{1}$ e.g. $\left|z_{1}\right|=\sqrt{(-4)^{2}+4^{2}}$ or $\arg z_{1}=\pi-\frac{\pi}{4}$
A1: Correct expression. The " $z_{1}=$ " is not required.
This mark is not for correct modulus and correct argument it is for the complex number written in the required form. Condone the missing closing bracket e.g. $\left(z_{1}=\right) \sqrt{32}\left(\cos \frac{3 \pi}{4}+\mathrm{i} \sin \frac{3 \pi}{4}\right.$
(b)(i) Correct answer with no working scores no marks in (b)(i)

M1: Employs a correct method to find the quotient. E.g.

- uses modulus argument form and divides moduli and subtracts arguments the right way round
- uses exponential form and divides moduli and subtracts arguments the right way round
- converts z_{2} to Cartesian form and multiplies numerator and denominator by the complex conjugate of the denominator. Allow if the " 3 " is missing for this method. Allow with decimals for this method e.g. $\frac{z_{1}}{z_{2}}=\frac{-4+4 \mathrm{i}}{-0.258 \ldots-0.965 \ldots \mathrm{i}} \times \frac{-0.258 \ldots+0.965 \ldots \mathrm{i}}{-0.258 \ldots+0.965 \ldots \mathrm{i}}=\ldots$

If they convert z_{2} to Cartesian form it must be correct as shown or correct decimals.

A1: Correct exact answer in the required form.
Do not allow e.g. $-\frac{2}{3}(\sqrt{2}+\sqrt{6} i)$ or $\frac{-2 \sqrt{2}-2 \sqrt{6} \mathrm{i}}{3}$ unless a correct form is seen previously then apply isw.
Provided a correct method is shown as above, allow to go from the forms in the main scheme to the correct exact answer with no intermediate step.
(ii)

$$
\begin{array}{c|c|c}
z_{2}^{4}=3^{4}\left(\cos \left(4 \times \frac{17 \pi}{12}\right)+\mathrm{i} \sin \left(4 \times \frac{17 \pi}{12}\right)\right) & \\
\left(z_{2}\right)^{4}=\left(3 \mathrm{e}^{\frac{17 \pi}{12} \mathrm{i}}\right)^{4}=3^{4} \mathrm{e}^{\frac{17 \pi}{12} \times 4 \mathrm{i}} \\
\text { or } & \text { M1 } & 1.1 \mathrm{~b} \\
z_{2}^{4}=\left\{3\left(\left(\frac{\sqrt{2}-\sqrt{6}}{4}\right)-\mathrm{i}\left(\frac{\sqrt{2}+\sqrt{6}}{4}\right)\right)\right\}^{4}=\ldots & \text { A1 } & 1.1 \mathrm{~b} \\
=\frac{81}{2}-\frac{81 \sqrt{3}}{2} \mathrm{i} \text { or } \frac{81}{2}-\mathrm{i} \frac{81 \sqrt{3}}{2} \text { or } \frac{81}{2}+\mathrm{i}\left(-\frac{81 \sqrt{3}}{2}\right) & \mathbf{(2)} &
\end{array}
$$

(b)(ii) Correct answer with no working scores no marks in (b)(ii)

M1: Applies De Moivre's theorem correctly to z_{2}. E.g. uses polar form or exponential form and
calculates the modulus as 3^{4} and the argument as $4 \times \frac{17 \pi}{12}$
For attempts at $z_{2}^{4}=\left\{3\left(\left(\frac{\sqrt{2}-\sqrt{6}}{4}\right)-\mathrm{i}\left(\frac{\sqrt{2}+\sqrt{6}}{4}\right)\right)\right\}^{4}$ you would need to see:

- the correct exact form used
- a clear and convincing attempt to expand the brackets e.g. by using a full binomial expansion or a complete attempt to multiply all 4 brackets together but you are not expected to check every detail
- a final answer in the required form with no obvious errors seen

$$
\text { So } z_{2}^{4}=\left\{3\left(\left(\frac{\sqrt{2}-\sqrt{6}}{4}\right)-\mathrm{i}\left(\frac{\sqrt{2}+\sqrt{6}}{4}\right)\right)\right\}^{4}=\frac{81}{2}-\frac{81 \sqrt{3}}{2} \mathrm{i} \text { scores no marks. }
$$

Similar guidance applies if they attempt to expand $\left\{3\left(\cos \frac{17 \pi}{12}+\mathrm{i} \sin \frac{17 \pi}{12}\right)\right\}^{4}$
A1: Correct exact answer in the required form.
Do not allow e.g. $\frac{81}{2}\left(1-\frac{81 \sqrt{3}}{2} i\right)$ or $\frac{81-81 \sqrt{3} \mathrm{i}}{2}$ unless a correct form is seen previously then apply isw.
Provided a correct method is shown as above, allow to go from the forms in the main scheme to the correct exact answer with no intermediate step.

