8(a) Accept E.g.

- 1 month is too old for "newborn"
- The mammals might not start breeding at exactly 3 months old
- The mammals will stop breeding beyond a certain age
- Being over 3 months old doesn't necessarily mean the mammal can breed
- Some mammals over 3 months may be infertile so will not be breeders
- Some juveniles might be breeders

But not

- The size of the categories is different
- There might be overlap
- The exact age of mammals might not be known
- The numbers in each category will be different
- Breeding age is different for different species
B1 83.5 b

B1: Any valid limitation - see scheme for some examples. Must refer to a feature of the categories given.

(b)(i)	$\begin{aligned} & \left(\begin{array}{ccc} 0 & 0 & 2 \\ a & b & 0 \\ 0 & 0.48 & 0.96 \end{array}\right)^{2}\left(\begin{array}{l} 0 \\ 0 \\ k \end{array}\right)=\left(\begin{array}{ccc} 0 & 0 & 2 \\ a & b & 0 \\ 0 & 0.48 & 0.96 \end{array}\right)\left(\begin{array}{c} 2 k \\ 0 \\ 0.96 k \end{array}\right) \\ & \left(\begin{array}{ccc} 0 & 0.96 & 1.92 \\ a b & b^{2} & 2 a \\ 0.48 a & 0.48 b+0.96 \times 0.48 & 0.96^{2} \end{array}\right)\left(\begin{array}{l} 0 \\ 0 \\ k \end{array}\right)=\left(\begin{array}{c} 1.92 k \\ 2 a k \\ 0.9216 k \end{array}\right) \end{aligned}$	M1	3.4
	$48=2 \times 0.96 k \Rightarrow k=\ldots$	dM1	1.1b
	$k=25$ so 25 mammals at the start of the study	A1	3.2a
(ii)	$40=2 k a \Rightarrow a=0.8 *$	A1*	1.1b
		(4)	

(b)(i)

M1: Attempts to use the given information to set up a matrix equation and find the numbers of mammals after one month e.g.

$$
\left(\begin{array}{ccc}
0 & 0 & 2 \\
a & b & 0 \\
0 & 0.48 & 0.96
\end{array}\right)\left(\begin{array}{c}
N_{0} \\
J_{0} \\
B_{0}
\end{array}\right)=\left(\begin{array}{c}
2 B_{0} \\
a N_{0}+b J_{0} \\
0.48 J_{0}+0.96 B_{0}
\end{array}\right)
$$

or attempts to square the matrix to find the number of mammals after two months e.g.

$$
\left(\begin{array}{ccc}
0 & 0.96 & 1.92 \\
a b & b^{2} & 2 a \\
0.48 a & 0.48 b+0.96 \times 0.48 & 0.96^{2}
\end{array}\right)\left(\begin{array}{c}
N_{0} \\
J_{0} \\
B_{0}
\end{array}\right)=\ldots
$$

dM1: Forms an equation, in their variable for number of breeders at the start, setting their number of newborns after 2 months equal to 48 and solves for their variable to find the initial number of breeders.
A1: For identifying 25 mammals at the start of the study. Allow 25 mammals or just 25 or e.g. $B_{0}=25$ so ignore how they label it just look for 25
Note that in some cases work may be minimal e.g.

$$
\begin{gathered}
\left(\begin{array}{ccc}
0 & 0 & 2 \\
a & b & 0 \\
0 & 0.48 & 0.96
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
B_{0}
\end{array}\right)=\left(\begin{array}{c}
N_{1} \\
J_{1} \\
B_{1}
\end{array}\right) \Rightarrow 0.96 B_{0}=B_{1},\left(\begin{array}{ccc}
0 & 0 & 2 \\
a & b & 0 \\
0 & 0.48 & 0.96
\end{array}\right)\left(\begin{array}{c}
N_{1} \\
J_{1} \\
B_{1}
\end{array}\right)=\left(\begin{array}{l}
48 \\
40 \\
B_{2}
\end{array}\right) \Rightarrow 2 B_{1}=48 \\
B_{1}=24=0.96 B_{0} \Rightarrow B_{0}=25
\end{gathered}
$$

(ii)

A1*: For correctly showing $a=0.8$. Must see the correct work to establish the correct value or equivalent by verification with a minimal conclusion e.g.

$$
\left(\begin{array}{ccc}
0 & 0 & 2 \\
0.8 & b & 0 \\
0 & 0.48 & 0.96
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
25
\end{array}\right)=\left(\begin{array}{c}
50 \\
0 \\
24
\end{array}\right)=\left(\begin{array}{c}
48 \\
40 \\
B_{2}
\end{array}\right) \Rightarrow 0.8 \times 50=40 \text { Hence true * }
$$

(c)

B1: Deduces correct determinant for the matrix. Allow equivalents e.g. $\frac{96}{125}$ May be implied.
M1: Recognisable attempt at the adjoint matrix. Look for at least 3 non-zero entries correct. A1: Correct inverse. Accept awrt $-2.6 b$ for the upper right entry and awrt 2.08 for middle right entry, or accept with determinant still outside. Apply isw once a correct answer is seen.
(d)

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
1.25 b & 1.25 & -\frac{125}{48} b \\
-1 & 0 & \frac{25}{12} \\
0.5 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
596 \\
464 \\
437
\end{array}\right)
$$

Total $=1.25 b \times 596+1.25 \times 464-\frac{125}{48} b \times 437-596+\frac{25}{12} \times 437+0.5 \times 596$
$\Rightarrow 1015=x+y+z=745 b+580-1138 b-596+910.4+298 \Rightarrow b=\ldots$

dM1	3.4
A1	1.1 b

(3)
(d) Alternative:
$\left.\begin{array}{c}\left(\begin{array}{ccc}0 & 0 & 2 \\ 0.8 & b & 0 \\ 0 & 0.48 & 0.96\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}596 \\ 464 \\ 437\end{array}\right) \Rightarrow \begin{array}{c}2 z=596 \\ 0.8 x+b y=464 \\ 0.48 y+0.96 z=437\end{array} \\ \Rightarrow z=298, y=\frac{3773}{12}(314.4 \ldots)\end{array}\right)$ M1 $\left.\begin{array}{c}3.1 \mathrm{~b} \\ x+y+z=1015 \Rightarrow x=\ldots \frac{4831}{12}(402.5 \ldots)\end{array}\right]$
(d)

M1: Attempts (their inverse matrix) $\times\left(\begin{array}{l}596 \\ 464 \\ 437\end{array}\right)$ correctly and adds the 3 expressions together to find the total in terms of b.
M1: Sets their total $=1015$ and solves for b.
A1: awrt 0.45
Alternative:
M1: Uses the original matrix with $a=0.8$ and $\left(\begin{array}{l}596 \\ 464 \\ 437\end{array}\right)$ to form 3 equations in their variables and b and uses these and the 1015 to find the number of Newborns.
M1: Uses their values in the y component and solves for b.
A1: awrt 0.45

Let $N M_{n}$ be newborn males and $N F_{n}$ be newborn females in month n

$$
\begin{aligned}
& \left(\begin{array}{c}
N M_{n+1} \\
N F_{n+1} \\
J_{n+1} \\
B_{n+1}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0.84 \\
0 & 0 & 0 & 1.16 \\
? & ? & 0.45 & 0 \\
0 & 0 & 0.48 & 0.96
\end{array}\right)\left(\begin{array}{c}
N M_{n} \\
N F_{n} \\
J_{n} \\
B_{n}
\end{array}\right) \\
& \left(\begin{array}{c}
N F_{n+1} \\
N M_{n+1} \\
J_{n+1} \\
B_{n+1}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 1.16 \\
0 & 0 & 0 & 0.84 \\
? & ? & 0.45 & 0 \\
0 & 0 & 0.48 & 0.96
\end{array}\right)\left(\begin{array}{c}
N F_{n} \\
N M_{n} \\
J_{n} \\
B_{n}
\end{array}\right)
\end{aligned}
$$

Notes:

(e)

M1: Defines new variables for male and female newborns (accept if a clear notation is used if not defined) and sets up a 4×4 matrix with structure shown, or male and female rows swapped, with the correct 0 entries in at least 4 places.
A1ft: Fully correct matrix system shown, accepting anything (including 0) for the unknown spaces shown - but must have all the 0's and upper right entries correct. Accept b or their value of b in place of 0.45

