Question	Scheme	Marks	AOs
8(a)	 Accept E.g. 1 month is too old for "newborn" The mammals might not start breeding at exactly 3 months old The mammals will stop breeding beyond a certain age Being over 3 months old doesn't necessarily mean the mammal can breed Some mammals over 3 months may be infertile so will not be breeders Some juveniles might be breeders But not The size of the categories is different There might be overlap The exact age of mammals might not be known The numbers in each category will be different Breeding age is different for different species 	B1	3.5b
		(1)	

(a)

B1: Any valid limitation – see scheme for some examples. Must refer to a feature of the categories given.

(b)(i)	$ \begin{pmatrix} 0 & 0 & 2 \\ a & b & 0 \\ 0 & 0.48 & 0.96 \end{pmatrix}^2 \begin{pmatrix} 0 \\ 0 \\ k \end{pmatrix} = \begin{pmatrix} 0 & 0 & 2 \\ a & b & 0 \\ 0 & 0.48 & 0.96 \end{pmatrix} \begin{pmatrix} 2k \\ 0 \\ 0 \\ 0.96k \end{pmatrix} $ or $ \begin{pmatrix} 0 & 0.96 & 1.92 \\ ab & b^2 & 2a \\ 0.48a & 0.48b + 0.96 \times 0.48 & 0.96^2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ k \end{pmatrix} = \begin{pmatrix} 1.92k \\ 2ak \\ 0.9216k \end{pmatrix} $	M1	3.4
	$48 = 2 \times 0.96k \Longrightarrow k = \dots$	dM1	1.1b
	k = 25 so 25 mammals at the start of the study	A1	3.2a
(ii)	$40 = 2ka \Longrightarrow a = 0.8 *$	A1*	1.1b
		(4)	

(b)(i)

M1: Attempts to use the given information to set up a matrix equation and find the numbers of mammals after one month e.g.

$$\begin{pmatrix} 0 & 0 & 2 \\ a & b & 0 \\ 0 & 0.48 & 0.96 \end{pmatrix} \begin{pmatrix} N_0 \\ J_0 \\ B_0 \end{pmatrix} = \begin{pmatrix} 2B_0 \\ aN_0 + bJ_0 \\ 0.48J_0 + 0.96B_0 \end{pmatrix}$$

or attempts to square the matrix to find the number of mammals after two months e.g.

$$\begin{pmatrix} 0 & 0.96 & 1.92 \\ ab & b^2 & 2a \\ 0.48a & 0.48b + 0.96 \times 0.48 & 0.96^2 \end{pmatrix} \begin{pmatrix} N_0 \\ J_0 \\ B_0 \end{pmatrix} = \dots$$

dM1: Forms an equation, in their variable for number of breeders at the start, setting their number of newborns after 2 months equal to 48 and solves for their variable to find the initial number of breeders.

A1: For identifying 25 mammals at the start of the study. Allow 25 mammals or just 25 or e.g. $B_0 = 25$ so ignore how they label it just look for 25

Note that in some cases work may be minimal e.g.

$$\begin{pmatrix} 0 & 0 & 2 \\ a & b & 0 \\ 0 & 0.48 & 0.96 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ B_0 \end{pmatrix} = \begin{pmatrix} N_1 \\ J_1 \\ B_1 \end{pmatrix} \Rightarrow 0.96B_0 = B_1, \\ \begin{pmatrix} 0 & 0 & 2 \\ a & b & 0 \\ 0 & 0.48 & 0.96 \end{pmatrix} \begin{pmatrix} N_1 \\ J_1 \\ B_1 \end{pmatrix} = \begin{pmatrix} 48 \\ 40 \\ B_2 \end{pmatrix} \Rightarrow 2B_1 = 48$$
$$B_1 = 24 = 0.96B_0 \Rightarrow B_0 = 25$$

(ii)

A1*: For correctly showing a = 0.8. Must see the correct work to establish the correct value or equivalent by verification with a minimal conclusion e.g.

$$\begin{pmatrix} 0 & 0 & 2 \\ 0.8 & b & 0 \\ 0 & 0.48 & 0.96 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 25 \end{pmatrix} = \begin{pmatrix} 50 \\ 0 \\ 24 \end{pmatrix} = \begin{pmatrix} 48 \\ 40 \\ B_2 \end{pmatrix} \Rightarrow 0.8 \times 50 = 40$$
 Hence true *

(c)	$\det \begin{pmatrix} 0 & 0 & 2 \\ 0.8 & b & 0 \\ 0 & 0.48 & 0.96 \end{pmatrix} = 0 - 0 + 2(0.48 \times 0.8 - 0) = 0.768$	B1	2.2a
	$\operatorname{adj} \begin{pmatrix} 0 & 0 & 2 \\ 0.8 & b & 0 \\ 0 & 0.48 & 0.96 \end{pmatrix} = \begin{pmatrix} 0.96b & 0.96 & -2b \\ -0.768 & 0 & 1.6 \\ 0.384 & 0 & 0 \end{pmatrix}$	M1	1.1b
	$= \begin{pmatrix} 1.25b & 1.25 & -\frac{125}{48}b \\ -1 & 0 & \frac{25}{12} \\ 0.5 & 0 & 0 \end{pmatrix} \text{ oe e.g. } \frac{1}{0.768} \begin{pmatrix} 0.96b & 0.96 & -2b \\ -0.768 & 0 & 1.6 \\ 0.384 & 0 & 0 \end{pmatrix}$ or e.g. $\frac{125}{96} \begin{pmatrix} 0.96b & 0.96 & -2b \\ -0.768 & 0 & 1.6 \\ 0.384 & 0 & 0 \end{pmatrix}$	A1	1.1b
		(3)	

(c)

B1: Deduces correct determinant for the matrix. Allow equivalents e.g. $\frac{96}{125}$ May be implied.

M1: Recognisable attempt at the adjoint matrix. Look for at least 3 non-zero entries correct. A1: Correct inverse. Accept awrt -2.6b for the upper right entry and awrt 2.08 for middle right entry, or accept with determinant still outside. Apply isw once a correct answer is seen.

(d)	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1.25b & 1.25 & -\frac{125}{48}b \\ -1 & 0 & \frac{25}{12} \\ 0.5 & 0 & 0 \end{pmatrix} \begin{pmatrix} 596 \\ 464 \\ 437 \end{pmatrix}$ Total = 1.25b × 596 + 1.25 × 464 - $\frac{125}{48}b$ × 437 - 596 + $\frac{25}{12}$ × 437 + 0.5 × 596	M1	3.1b
	$\Rightarrow 1015 = x + y + z = 745b + 580 - 1138b - 596 + 910.4 + 298 \Rightarrow b = \dots$	dM1	3.4
	$b = awrt \ 0.45$	A1	1.1b
		(3)	
	(d) Alternative:		
	$\begin{pmatrix} 0 & 0 & 2 \\ 0.8 & b & 0 \\ 0 & 0.48 & 0.96 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 596 \\ 464 \\ 437 \end{pmatrix} \Rightarrow \begin{array}{l} 2z = 596 \\ \Rightarrow & 0.8x + by = 464 \\ 0.48y + 0.96z = 437 \\ \Rightarrow z = 298, y = \frac{3773}{12} (314.4) \\ x + y + z = 1015 \Rightarrow x = \frac{4831}{12} (402.5) \end{cases}$	M1	3.1b
	$0.8x + by = 464 \Longrightarrow 0.8 \times \frac{4831}{12} + b \times \frac{3773}{12} = 464 \Longrightarrow b = \dots$	dM1	3.4
	$b = awrt \ 0.45$	A1	1.1b
		(3)	

(d)

M1: Attempts (their inverse matrix) $\times \begin{pmatrix} 596 \\ 464 \\ 437 \end{pmatrix}$ correctly and adds the 3 expressions together to find

the total in terms of b.

M1: Sets their total = 1015 and solves for b.

A1: awrt 0.45

Alternative:

M1: Uses the original matrix with
$$a = 0.8$$
 and $\begin{bmatrix} 5 \\ 4 \\ 4 \end{bmatrix}$

 $\begin{pmatrix} 596\\ 464\\ 437 \end{pmatrix}$ to form 3 equations in their variables and *b*

and uses these and the 1015 to find the number of Newborns.

M1: Uses their values in the *y* component and solves for *b*.

A1: awrt 0.45

(e)	Let NM_n be newborn males and NF_n be newborn females in month n		
	$ \begin{pmatrix} NM_{n+1} \\ NF_{n+1} \\ I \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0.84 \\ 0 & 0 & 0 & 1.16 \\ 2 & 2 & 0.45 & 0 \end{pmatrix} \begin{pmatrix} NM_n \\ NF_n \\ I \end{pmatrix} $		
	$ \left(\begin{array}{c} \mathbf{J}_{n+1} \\ \mathbf{B}_{n+1} \end{array}\right) \left(\begin{array}{c} 1 & 1 & 0.43 & 0 \\ 0 & 0 & 0.48 & 0.96 \end{array}\right) \left(\begin{array}{c} \mathbf{J}_{n} \\ \mathbf{B}_{n} \end{array}\right) $	M1	3.5c
	or e.g.	A1ft	3.3
	$\left(NF_{n+1} \right) \left(\begin{array}{ccc} 0 & 0 & 0 & 1.16 \end{array} \right) \left(NF_n \right)$		0.0
	$\left NM_{n+1} \right = \left \begin{array}{ccc} 0 & 0 & 0 & 0.84 \end{array} \right NM_{n}$		
	$\begin{vmatrix} J_{n+1} \end{vmatrix}^{-}$?? 0.45 0 $\begin{vmatrix} J_n \end{vmatrix}$		
	$\left(\begin{array}{ccc}B_{n+1}\end{array} ight)\left(\begin{array}{cccc}0&0&0.48&0.96\end{array} ight)\left(\begin{array}{cccc}B_{n}\end{array} ight)$		
		(2)	
	(13 marks)		

Notes:

(e)

M1: Defines new variables for male and female newborns (accept if a clear notation is used if not defined) and sets up a 4×4 matrix with structure shown, or male and female rows swapped, with the correct 0 entries in at least 4 places.

A1ft: Fully correct matrix system shown, accepting anything (including 0) for the unknown spaces shown – but must have all the 0's and upper right entries correct. Accept b or their value of b in place of 0.45