Question	Scheme	Marks	AOs
3(a)	Max $r=4+a=5.5 \Rightarrow a=$	M1	3.4
	<i>a</i> = 1.5	A1	2.2a
		(2)	
(b)	Pool area = $\frac{1}{2} \int_{0}^{2\pi} (4 - "1.5" \sin 3\theta)^2 d\theta$	∩M1	3.1a
	$(4 - "1.5"\sin 3\theta)^2 = 16 - "12"\sin 3\theta + "2.25"\sin^2 3\theta$		
	$= 16 - "12" \sin 3\theta + "2.25" \left(\frac{1 - \cos 6\theta}{2}\right) \left[= 16 - 8a \sin 3\theta + a^2 \left(\frac{1 - \cos 6\theta}{2}\right) \right]$	M1	2.1
	$\int (4 - "1.5" \sin 3\theta)^2 d\theta = 16\theta + "4" \cos 3\theta + "\frac{9}{8}" \left(\theta - \frac{\sin 6\theta}{6}\right)$	Alft	1.1b
	$\left[= 16\theta + \frac{8a}{3}\cos 3\theta + \frac{a^2}{2}\left(\theta - \frac{\sin 6\theta}{6}\right) \right]$		
	$\frac{1}{2} \left["\frac{137}{8}"\theta + "4"\cos 3\theta - "\frac{3}{16}"\sin 6\theta \right]_0^{2\pi} = \dots \left(\frac{137}{8}\pi\right)$	dM1	3.1a
	Area of $T = \pi \times 36 - \frac{137}{8}\pi$	ĐM1	1.1b
	$=\frac{151}{8}\pi \ \left(\mathrm{m}^2\right) \ \mathrm{oe}$	A1	1.1b
		(6)	
(8 marks)			
Notes			

(a)

M1: Uses all the information given for the model and realises the maximum value of r is (4 + a) and uses the radius of the circle to find a value for a.

A1: Deduces the correct value of *a*. Note a = -1.5 can potentially gain M1A0. (b)

Note accept with their *a*, a made up *a* or even *a* itself for the first 5 marks. Note use of a = -1.5 can score full marks.

M1: Adopts a correct strategy for the area of the pool. This requires the correct use of the polar area formula including the $\frac{1}{2}$.

Note the $\frac{1}{2}$ may be implied by choice of limits (e.g. any span of π radians without the half implies an attempt at doubling so the $\frac{1}{2}$ may not appear (even if the symmetry is incorrect).)

M1: Squares the bracket, achieving three terms, and applies $\sin^2 3\theta = \frac{\pm 1 \pm \cos 6\theta}{2}$ in order to

reach an integrable form. Condone numerical slips when expanding.

A1ft: Correct integration in any form ($\frac{1}{2}$ not needed here) (follow through their *a*). ie as shown in

scheme or if gathered it is $(32+a^2)\frac{\theta}{2} + \frac{8a}{3}\cos 3\theta - a^2\frac{\sin 6\theta}{12}$

dM1: Depends on previous M. Uses appropriate limits for their integrated function. Allow limits other than 0 and 2π by using symmetry provided the correct multiple is used, e.g. $\frac{\pi}{2}$ and $\frac{3\pi}{2}$

followed by doubling (which may be cancelled with the $\frac{1}{2}$) or $-\frac{\pi}{6}$ and $\frac{\pi}{2}$ and multiplying by 3

DM1: Depends on first M. Fully correct strategy for obtaining the area of *T*. Must have a correct attempt at the circle area (maybe be via integration) and area inside the curve. Symmetry may have been used.

A1: Correct area from fully correct work (all previous marks scored). Units not required. The decimal answer 18.875π is acceptable, but answer must be exact, not a rounded decimal.

Note: $\sin^2 3\theta = \frac{\pm 1 \pm \cos 2\theta}{2}$ use will score a maximum of M1M0A0dM0DM1A0 Note: if $\frac{1}{2} \int_{0}^{2\pi} 6^2 - (4 - a \sin 3\theta)^2 d\theta$ is used the scheme will follow as above with A1ft for $10\theta - \frac{8a}{6}\cos 3\theta - \frac{a^2}{4}\left(\theta - \frac{\sin 6\theta}{6}\right)$ and dM1DM1 gained together. Note: Integrating over 0 to 2π means the trig terms will disappear so watch out for incorrect trig

terms in the integration, which will lead to the correct answer but will lose both A marks.