Question	Scheme	Marks	AOs
6	If $n = 1$ $\sum_{r=1}^{n} (2r-1)^{2} = (2-1)^{2} = 1 \text{ and } \frac{1}{3}n(4n^{2}-1) = \frac{1}{3}(1)(4(1)^{2}-1) = 1$ (LHS=RHS) so true for $n = 1$	B1	2.4
	(Assume true for $n = k$ so $\sum_{r=1}^{k} (2r-1)^2 = \frac{1}{3}k(4k^2-1)$ then) $\sum_{r=1}^{k+1} (2r-1)^2 = \frac{1}{3}k(4k^2-1) + (2(k+1)-1)^2$	M1	2.1
	E.g = $\frac{1}{3}(2k+1)(2k^2+5k+3)$ or = $\frac{4}{3}k^3 - \frac{1}{3}k + 4k^2 + 4k + 1$	dM1	1.1b
	$\frac{1}{3}(k+1)(2k+3)(2k+1) \text{ or } \frac{1}{3}(k+1)(4k^2+8k+3) \text{ or}$ $\frac{4k^3}{3}+4k^2+\frac{11k}{3}+1$	A1	1.1b
	$=\frac{1}{3}(k+1)(4(k+1)^2-1)$ Or see notes	A1	2.2a
	If the statement is true for $n = k$ then it has been shown true for $n = k + 1$ and as it is true for $n = 1$, the statement is true for all positive integers <i>n</i> .	A1	2.4
		(6)	
(6 marks)			

Notes

B1: Demonstrates the statement is true for n = 1. Accept as minimum $(1)^2 = 1$ and $\frac{1}{3}(3) = 1$ for the

check (both sides must clearly be evaluated as 1), and for the conclusion "true for n = 1" or broken "if/when n = 1 <check> (hence) true/shown/tick" – must be part of the initial check (not just in the conclusion).

M1: Assume the result for n = k and attempts to add the $(k + 1)^{\text{th}}$ term to the result for the sum to k terms. An assumption may be clearly made, but accept tacit assumptions. Allow if there are minor slips in the expressions if the intent is clear.

dM1: Makes progress towards proving the inductive step by either factorising the common factor (2k+1) or expanding fully. There may be variations so score for equivalent progress.

A1: Either for a correct factorised form with (k + 1) as a factor or a fully correct expansion with gathered terms. Must have come from correct work from the inductive step, not backwards worked from the n = k + 1 expression.

A1: Completes the inductive steps by obtaining the correct expression in terms of (k + 1) with suitable intermediate step e.g. clear factorisation of (k+1) first, OR by expanding the required expression for n = k + 1 to achieve equal expressions. Must have been completely correct work, no errors.

A1: Depends on the MMAA marks having been scored with at least an attempt to check one side of the n = 1 case having been made. Correct complete conclusion. Must include the notions of "true for n = 1", "true for n = k implies true for n = k+1" and "hence true for all n" though the exact wording will vary. The conclusion should be given at the end with the exception that the "true for n = 1" may be stated with the initial check.

Note: stating "true for n = k and n = k + 1" will be A0.

Note: Accept use of *n* instead of *k* for all except the final A mark.

Note: Attempts at using summation formulae without induction score no marks.