of the raindrop, t seconds after the raindrop starts to fall, is modelled by the differential equation $(t+2)\frac{\mathrm{d}v}{\mathrm{d}t} + 3v = k(t+2) - 3 \qquad t \geqslant 0$

5. A raindrop falls from rest from a cloud. The velocity, $v \, \text{m s}^{-1}$ vertically downwards,

where
$$k$$
 is a positive constant.

(a) Solve the differential equation to show that

$$y = k(t+2)$$

$$v = \frac{k}{4}(t+2) - 1 + \frac{4(2-k)}{(t+2)^3}$$

Given that
$$v = 4$$
 when $t = 2$

(b) determine, according to the model, the velocity of the raindrop 5 seconds after it

(c) Comment on the validity of the model for very large values of t **(1)**

(5)

(3)