7. The line l_1 has equation $\mathbf{r} = \mathbf{i} - 2\mathbf{j} + 3\mathbf{k} + \lambda(2\mathbf{i} + \mathbf{j} - 4\mathbf{k})$ and the line l_2 has equation $\mathbf{r} = 5\mathbf{i} + p\mathbf{j} - 7\mathbf{k} + \mu(6\mathbf{i} + \mathbf{j} + 8\mathbf{k})$ where λ and μ are scalar parameters and p is a constant. The plane Π contains l_1 and l_2 (a) Show that the vector $3\mathbf{i} - 10\mathbf{j} - \mathbf{k}$ is perpendicular to Π **(2)** (b) Hence determine a Cartesian equation of Π **(2)** (c) Hence determine the value of p **(2)** Given that the lines l_1 and l_2 intersect at the point Athe point B has coordinates (12, -11, 6)(d) determine, to the nearest degree, the acute angle between AB and Π **(4)**