$\mathbf{3 (i) (a) ~}$	$\|\mathbf{M}\|=2(1+2)-a(-1-1)+4(2-1)=0 \Rightarrow a=\ldots$	M1	2.3
	The matrix \mathbf{M} has an inverse when $a \neq-5$	A1	1.1 b
		(2)	

B1
1.1b

Cofactors: $\left(\begin{array}{ccc}3 & 2 & 1 \\ a+8 & 2 & -a-4 \\ 4-a & 6 & -2-a\end{array}\right)$
$\mathbf{M}^{-1}=\frac{1}{|\mathbf{M}|} \operatorname{adj}(\mathbf{M})$
$\mathbf{M}^{-1}=\frac{1}{2 a+10}\left(\begin{array}{ccc}3 & a+8 & 4-a \\ 2 & 2 & 6 \\ 1 & -a-4 & -2-a\end{array}\right)$
or

- -

A1ft 1.1b through their $\operatorname{det} \mathbf{M}$ | All correct. Follow |
| :--- | :--- | :--- |
| through their det M |\quad A1ft \quad 1.1b

(2)
(b)

Minors: $\left(\begin{array}{crc}3 & -2 & 1 \\ -a-8 & 2 & a+4 \\ 4-a & -6 & -2-a\end{array}\right)$
(ii)

When $\mathrm{n}=1$, lhs $=\left(\begin{array}{ll}3 & 0 \\ 6 & 1\end{array}\right), \quad$ rhs $=\left(\begin{array}{cc}3^{1} & 0 \\ 3\left(3^{1}-1\right) & 1\end{array}\right)=\left(\begin{array}{ll}3 & 0 \\ 6 & 1\end{array}\right)$
So the statement is true for $\mathrm{n}=1$
Assume true for $\mathrm{n}=\mathrm{k}$ so $\left(\begin{array}{ll}3 & 0 \\ 6 & 1\end{array}\right)^{\mathrm{k}}=\left(\begin{array}{cc}3^{k} & 0 \\ 3\left(3^{k}-1\right) & 1\end{array}\right)$

$$
\left(\begin{array}{ll}
3 & 0 \\
6 & 1
\end{array}\right)^{k+1}=\left(\begin{array}{cc}
3^{k} & 0 \\
3\left(3^{k}-1\right) & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 0 \\
6 & 1
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
3 \times 3^{k} & 0 \\
3 \times 3\left(3^{k}-1\right)+6 & 1
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
3^{k+1} & 0 \\
3\left(3^{k+1}-1\right) & 1
\end{array}\right)
$$

If the statement is true for $n=k$ then it has been shown true for $\mathrm{n}=\mathrm{k}+1$ and as it is true for $\mathrm{n}=1$, the statement is true for all positive integers n

Question 3 notes:

(i)(a)

M1: Attempts determinant, equates to zero and attempts to solve for a in order to establish the restriction for a
A1: Provides the correct condition for a if \mathbf{M} has an inverse
(i)(b)

B1: A correct matrix of minors or cofactors
M1: For a complete method for the inverse
A1ft: Two correct rows following through their determinant
A1ft: Fully correct inverse following through their determinant
(ii)

B1: Shows the statement is true for $\mathrm{n}=1$
M1: Assumes the statement is true for $\mathrm{n}=\mathrm{k}$
M1: Attempts to multiply the correct matrices
A1: Correct matrix in terms of k
A1: Correct matrix in terms of $k+1$
A1: Correct complete conclusion

