

Question	Scheme	Marks	AOs
	(b)(ii) Alternative:		
	$\label{eq:constraint} \bigwedge \\ A \\ Candidates may take a geometric approach e.g. by finding sector + 2 triangles \\ \end{array}$		
	Angle $ACB = \left(\frac{2\pi}{3}\right)$ so area sector $ACB = \frac{1}{2}(5)^2 \frac{2\pi}{3}$ Area of triangle $OCB = \frac{1}{2} \times 8 \times 3$	M1	3.1a
	Sector area ACB + triangle area $OCB = \frac{25\pi}{3} + 12$	A1	1.1b
	Area of triangle <i>OAC</i> : Angle $ACO = 2\pi - \frac{2\pi}{3} - \cos^{-1}\left(\frac{5^2 + 5^2 - 8^2}{2 \times 5 \times 5}\right)$ so area $OAC = \frac{1}{2}(5)^2 \sin\left(\frac{4\pi}{3} - \cos^{-1}\left(\frac{-7}{25}\right)\right)$	M1	1.1b
	$=\frac{25}{2}\left(\sin\frac{4\pi}{3}\cos\left(\cos^{-1}\left(\frac{-7}{25}\right)\right) - \cos\frac{4\pi}{3}\sin\left(\cos^{-1}\left(\frac{-7}{25}\right)\right)\right)$ $=\frac{25}{2}\left(\left(\frac{7\sqrt{3}}{50}\right) + \frac{1}{2}\sqrt{1 - \left(\frac{7}{25}\right)^2}\right) = \frac{7\sqrt{3}}{4} + 6$ $\text{Total area} = \frac{25\pi}{3} + \frac{1}{2} \times 8 \times 3 + 6 + \frac{7\sqrt{3}}{4}$	M1	2.1
	$=\frac{7\sqrt{3}}{4}+\frac{25\pi}{3}+18$	Al	1.1b
		(13 n	narks)

Quest	Question 6 notes:			
(a)(i)				
M1:	Draws a circle which passes through the origin			
A1:	Fully correct diagram			
(a)(ii)				
M1:	Uses $z = x + iy$ in the given equation and uses modulus to find equation in x and y only			
A1:	Correct equation in terms of x and y in any form – may be in terms of r and θ			
M1:	Introduces polar form, expands and uses $\cos^2 \theta + \sin^2 \theta = 1$ leading to a polar equation			
A1*:	Deduces the given equation (ignore any reference to $r = 0$ which gives a point on the curve)			
(b)(i)				
B1:	Correct pair of rays added to their diagram			
B1ft:	Area between their pair of rays and inside their circle from (a) shaded, as long as there is an			
	intersection			
(b)(ii)				
M1:	Selects an appropriate method by linking the diagram to the polar curve in (a), evidenced by			
	use of the polar area formula			
M1:	Uses double angle identities			
A1:	Correct integral			
M1:	Integrates and applies limits			
A1:	Correct area			
1	(b)(ii) Alternative:			
M1:	Selects an appropriate method by finding angle <i>ACB</i> and area of sector <i>ACB</i> and finds area			
	of triangle OCB to make progress towards finding the required area			
A1:	Correct combined area of sector ACB + triangle OCB			
M1:	Starts the process of finding the area of triangle <i>OAC</i> by calculating angle <i>ACO</i> and attempts			
	area of triangle OAC			
M1:	Uses the addition formula to find the exact area of triangle OAC and employs a full correct			
	method to find the area of the shaded region			
A1:	Correct area			